Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93070
Название: Interpolating Wavelets on the Sphere
Авторы: Chernykh, N. I.
Дата публикации: 2019
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Chernykh N. I. Interpolating Wavelets on the Sphere / N. I. Chernykh. — DOI 10.15826/umj.2019.2.001. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 3-12.
Аннотация: There are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like bases) were constructed. In all such constructions, the authors seek to preserve the most important properties of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to construct bases of spaces of functions of several variables.
Ключевые слова: WAVELETS
MULTIRESOLUTION ANALYSIS
SCALING FUNCTIONS
INTERPOLATING WAVELETS
BEST APPROXIMATION
TRIGONOMETRIC POLYNOMIALS
URI: http://elar.urfu.ru/handle/10995/93070
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.2.001
Сведения о поддержке: This work wassupported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Источники: Ural Mathematical Journal. 2019. Volume 5. № 2
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_2_3-12.pdf166,38 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons