Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93070
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chernykh, N. I. | en |
dc.date.accessioned | 2020-10-30T12:53:58Z | - |
dc.date.available | 2020-10-30T12:53:58Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Chernykh N. I. Interpolating Wavelets on the Sphere / N. I. Chernykh. — DOI 10.15826/umj.2019.2.001. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 3-12. | en |
dc.identifier.issn | 2414-3952 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/93070 | - |
dc.description.abstract | There are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like bases) were constructed. In all such constructions, the authors seek to preserve the most important properties of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to construct bases of spaces of functions of several variables. | en |
dc.description.sponsorship | This work wassupported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.publisher | Ural Federal University named after the first President of Russia B.N. Yeltsin | en |
dc.relation.ispartof | Ural Mathematical Journal. 2019. Volume 5. № 2 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | WAVELETS | en |
dc.subject | MULTIRESOLUTION ANALYSIS | en |
dc.subject | SCALING FUNCTIONS | en |
dc.subject | INTERPOLATING WAVELETS | en |
dc.subject | BEST APPROXIMATION | en |
dc.subject | TRIGONOMETRIC POLYNOMIALS | en |
dc.title | Interpolating Wavelets on the Sphere | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.15826/umj.2019.2.001 | - |
local.description.firstpage | 3 | - |
local.description.lastpage | 12 | - |
local.issue | 2 | - |
local.volume | 5 | - |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2019_5_2_3-12.pdf | 166,38 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons