Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93070
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorChernykh, N. I.en
dc.date.accessioned2020-10-30T12:53:58Z-
dc.date.available2020-10-30T12:53:58Z-
dc.date.issued2019-
dc.identifier.citationChernykh N. I. Interpolating Wavelets on the Sphere / N. I. Chernykh. — DOI 10.15826/umj.2019.2.001. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 3-12.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93070-
dc.description.abstractThere are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like bases) were constructed. In all such constructions, the authors seek to preserve the most important properties of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to construct bases of spaces of functions of several variables.en
dc.description.sponsorshipThis work wassupported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2019. Volume 5. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectWAVELETSen
dc.subjectMULTIRESOLUTION ANALYSISen
dc.subjectSCALING FUNCTIONSen
dc.subjectINTERPOLATING WAVELETSen
dc.subjectBEST APPROXIMATIONen
dc.subjectTRIGONOMETRIC POLYNOMIALSen
dc.titleInterpolating Wavelets on the Sphereen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2019.2.001-
local.description.firstpage3-
local.description.lastpage12-
local.issue2-
local.volume5-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_2_3-12.pdf166,38 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons