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Abstract: There are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like
bases) were constructed. In all such constructions, the authors seek to preserve the most important properties
of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose
one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in
this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a
special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in
spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes
simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to
construct bases of spaces of functions of several variables.
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Introduction

Different systems of wavelets on the sphere are constructed and studied in a number of works.
We would like to note the constructions in the paper by Skopina [9]. They are beautiful but difficult
to put in practice, as their author notes herself. In [2], the ideas of these constructions were extended
to spheres in R

n. These and some other works mentioned below contain a good analysis of the
studies on the specified or close subject. In [4, 6, 7], to construct bases of wavelets on spheres
in S

2 and S
3, the tensor product of bases of one-dimensional wavelets is used including a basis of

exponential splines on a segment. In the papers [1, 5, 8], which contain much of the bibliography
related or close to the subject and the analysis of the previous results, in particular, the lifting-
scheme technique is used to construct biorthogonal wavelets on the sphere. This is accompanied by
rejecting a number of properties of classical wavelets including, for instance, shifts with a constant
step at each scaling level and with localization of the compression–stretching operation in the right
places. In the present paper, we attempt to preserve the standard properties of classical wavelets
on the line and on the period in the construction of wavelets on the sphere. In so doing, we give
preference to interpolating wavelets. Orthogonal wavelets are only defined. The study of their
approximative properties is postponed for the future. Here, for the classical schemes to construct
wavelets on the sphere to work, we carry out a double expansion of the unit sphere with a special
extension to it of the function originally defined on the sphere. This makes it possible to apply one-
dimensional periodic interpolation and interpolation–orthogonal bases of expanding subspaces of
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multiresolution analysis (constructed and studied in [3, 10]) to construct wavelets on the expanded
sphere.

1. Construction of wavelets on the sphere

Without loss of generality, we assume that S is the sphere of unit radius centered at the origin of
a Cartesian coordinate system, (θ, ϕ) are spherical coordinates of points of S (θ ↑π0 denotes latitude
and ϕ ↑2π0 denotes longitude) associated in a standard way with the Cartesian coordinates. Thus,

S = {M(θ, ϕ) ∈ S : 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π}.

For a uniform grid with any small step h = 2π/l (l ∈ N, l ≫ 1) in the angular coordinates θ, ϕ,
the geometrical sizes of cells of the corresponding grids on the sphere are strongly nonuniform. We
have cells with size of order h × h in R

3 near the equator, where θ is close to π/2, and we have
cells with size of order h× h2 near the poles, where θ is close to 0 in the case of the north pole N
or θ is close to π in the case of the south pole S. On S, every value ϕ ∈ T (where ϕ and ϕ±2lπ are
indistinguishable) determines the ϕ-meridian, i.e., the great circle arc

Mϕ := {M(θ, ϕ) : 0 ≤ θ ≤ π},

and every value θ ∈ (0, π) determines θ-latitude, i.e., the circle Mθ := {M(θ, ϕ) : 0 ≤ ϕ < 2π}
of radius rθ = sin θ in the plane zθ = cos θ centered at the point (0, 0, zθ) of the Cartesian system.
Despite the noted disadvantage of spherical coordinates and the specified grids on S uniform in θ
and ϕ, their application is profitable and simple for both the construction of wavelets on S and the
practical use of the wavelets in computational algorithms.

Thus, to construct basis scaling functions of the subspaces Vj(S) ⊂ L2(S) (j ∈ Z+) of
multiresolu-tion analysis on S, a usual method of passage from one-dimensional to multi-dimensional
wavelets can be used here by choosing as those the tensor product of the bases of the subspaces Vj(T)
of the space L2(T) of 2π-periodic functions and the bases of the subspaces Vj [0, π] ⊂ L2[0, π] as
done in [4]. It is true that, in this case, one has to use a construction of wavelets on a segment,
which is more complicated than that on the line or on a period, for instance, applying a “folding”
operation. Instead of this, in the present paper, the sphere “doubles”. Due to this, the construction
of bases of the subspaces Vj(S) reduces to the tensor product of two (possibly different) bases of
the subspaces Vj(T) in the variables ϕ and θ, respectively.

It is clear that any ϕ-meridian Mϕ is connected with the opposite (ϕ ± π)-meridian Mϕ±π on
which as well as on Mϕ, by the definition of the spherical coordinates (θ, ϕ), θ changes from 0
(at the pole N) to π (at the pole S). These two meridians form together the great circle Cϕ

on S. Keeping the bypass direction of the ϕ-meridian by the points M(θ, ϕ) when θ increases
on ϕ-meridian and changing it to the opposite on the ϕ ± π-meridian, for every ϕ ∈ [0, 2π], we
define the full ϕ-meridian as follows:

Cϕ := {M(θ, ϕ) ∈ Mϕ ∪Mϕ±π : 0 ≤ θ ≤ 2π},

where M(0, ϕ) = M(2π, ϕ).

We note that, although the full ϕ-meridian Cϕ, element-wisely coinciding with Mϕ ∪ Mϕ±π,
crosses the equator {M(θ, ϕ) : θ = π/2, 0 ≤ ϕ < 2π} in the two points (π/2, ϕ) and (π/2, ϕ ± π),
this meridian is completely determined by the value of the angle ϕ, since its bypass direction with
the increase of θ is determined by the movement direction of the pointM(θ, ϕ) along the ϕ-meridian
and is continuously extended to the (ϕ ± π)-meridian changing its original direction from N to S
to the opposite.
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Any function f defined on S uniquely determines the function f(θ, ϕ) of the variables ϕ ∈ [0, 2π]
and θ ∈ [0, π]. In particular, this function is uniquely defined on any full ϕ-meridian as a function
of θ, and to apply periodic wavelets in the construction of wavelets on S, it is very important that
the coordinate θ changes on Cϕ over the full period from 0 to 2π, since, in Cϕ, the function f(θ, ϕ)
is 2π-periodic in θ because the functions f(0, ϕ) and f(π, ϕ) on S do not depend on ϕ. However,
it is easy to see that Cϕ and Cϕ±π coincide as sets of points on S differing only in the direction of
movement of their points M with coordinate θ as θ ↑2π0 . As a result, every function f(θ, ϕ) single-
valued on S generates a two-valued function F (θ, ϕ) of the variable θ on every set Cϕ = Cϕ±π and,
hence, on S. Namely, for any ϕ ∈ [0, 2π), we have

F (θ, ϕ) =

{
f(θ, ϕ), θ ↑π0 on Mϕ,

f(2π − θ, ϕ± π), θ ↑2ππ on Mϕ±π

(1.1)

on Cϕ and

F (θ, ϕ) =

{
f(θ, ϕ± π), θ ↑π0 on Mϕ±π,

f(2π − θ, ϕ), θ ↑2ππ on Mϕ

(1.2)

on Cϕ±π. Obviously, this function completely restores f(θ, ϕ) already for 0 ≤ ϕ < π. However, it
is also important for us to preserve the 2π-periodicity of the function F in ϕ.

To avoid the two-valuedness, we use the fact that S is a two-sided surface and we distinguish
external and internal points M(r, θ, ϕ) of S considering them as if for r = 1 + 0 and r = 1− 0.

In what follows, we assume that the continuous passage from one side of S to the other is
allowed only through the poles N and S of the sphere S. In so doing, any full ϕ-meridian is not
placed on one side of S but is placed in two parts on different sides of S. We place the part Mϕ

of any full ϕ-meridian Cϕ on the external side S1+0 of S and the part Mϕ±π with θ ↑2ππ on the
internal part S1−0 of S. As a result, the function F (θ, ϕ) in (1.1) becomes a single-valued and
well-defined function on S1+0 ∪ S1−0 coinciding with f(θ, ϕ) on S1+0. On the internal side S1−0,
the function F (θ, ϕ) is defined by the part of formula (1.1) which relates to the (ϕ ± π)-meridian.
Formula (1.2) is given only to explain the reason of the two-valuedness of the function F (θ, ϕ) on S.

Now, according the usual classical Meyer scheme, one can easily construct a multiresolution
analysis on the double sphere S̃(2) = S1+0 ∪ S1−0 with angular coordinates of points on S̃(2) still
denoted by (θ, ϕ). In this case, θ changes from 0 to 2π on any full ϕ-meridian and values of ϕ can still
be bounded by the interval [0, 2π). The coordinates of points M(θ, ϕ) on S1+0 are usual spherical
coordinates. They are extended on S1−0 as follows: the ϕ-coordinate of the point M ∈ S1−0

coincides with its value in the original spherical coordinate system, and the value of its usual
spherical latitude, say τ , is replaced by θ = 2π − τ . It is easy to see that the point M with such
coordinates (θ, ϕ) belongs to the part of the full (ϕ ± π)-meridian lying on S1−0 (the sign, plus or
minus, in the expression ϕ± π can always be taken so that ϕ± π ∈ [0, 2π)).

As basic functions of the subspaces Vj(T) of multiresolution analysis on S̃(2) (defining Vj(T)
themselves), we take systems of 2π-periodic functions constructed on the basis of Meyer wavelets.

These are the trigonometric polynomials Φj,k
s (x) (s = 1, 2, 3) generating the finite-dimensional

subspaces Vj(T). We use them because of their simplicity. Furthermore, in order not to calculate
integral coefficients of function expansions in orthogonal systems, we restrict ourselves to the use
only of the interpolation properties of multiresolution analysis on finite grides in θ and ϕ. Since
the convergence of interpolation expansions for continuous (and especially smooth) functions on S

occurs with high rate, there is no need to apply the subspaces Vj(S̃(2)) with large indices j for
practical problems. Thus, one may not be afraid of a significant concentration of grid points near
the poles (especially in the case of computer implementation of algorithms of approximation of
functions f on S). The orthogonal properties of bases can be useful when approximating functions
integrable only on S.
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Thus, in what follows, we use (see [3, 10]) the scaling functions of periodic multiresolution
analyzes:

Φj,k
s (x) = 2−j

∑

|ν/2j |<(1+ε)/2

ϕ̂s

( ν

2j

)
eiν(x−2πk/2j), k = 0, 2j − 1, j ∈ Z+, s = 1, 2, 3, (1.3)

where
ϕ̂s(ω) = ϕ̂ε(ω)

2 + (1− δ3,s)i(signω)ϕ̂ε(ω)
(
ϕ̂ε(ω − 1) + ϕ̂ε(ω + 1)

)
, s = 2, 3. (1.4)

In turn, ϕ̂ε(ω), ε > 0, is an even continuous real function on R of Meyer type supported on the
interval |ω| < (1 + ε)/2 and such that ϕ̂ε(ω) = 1 for |ω| ≤ (1 − ε)/2 (0 < ε ≤ 1/3), the derivative
ϕ̂′
ε(ω) is a function of bounded variation, and ϕ̂2

ε(ω)+ ϕ̂2
ε(ω− 1) = 1 for (1− ε)/2 < ω ≤ (1+ ε)/2.

When s = 1, we replace ϕ̂ε(ω) in (1.4) by

ϕ̂1,ε(ω) =
1√
2

√
1 + ϕ̂ε(ω)− ϕ̂ε(ω − 1)− ϕ̂ε(ω + 1). (1.5)

For each s = 1, 2, 3, the functions Φj,k
s (x) form the interpolation basis of the subspaces V j

s (T)
(j ∈ Z+) of 2π-periodic multiresolution analysis:

Φj,k
s

(2πl
2j

)
= δk,l (k, l = 0, 2j − 1).

In addition, for s = 1, 2 and for any j ∈ Z+, the system {2j/2Φj,k
s (x)} is orthonormal on T:

1

2π

2π∫

0

2jΦj,k
s (x)Φj,l

s (x) dx = δk,l (k, l = 0, 2j − 1). (1.6)

For any j and for k, l = 0, 1, . . . , 2j − 1, we define

Φj,k,l
s (θ, ϕ) = Φj,k

s (θ)Φj,l
s (ϕ) for (θ, ϕ) ∈ T× T. (1.7)

Naturally, without any additional assumptions except for the 2π-periodicity, this is an interpolation
system of functions on the grid {(2πm/2j , 2πn/2j) : m,n = 0, 2j − 1}:

Φj,k,l
s

(2πm
2j

,
2πn

2j

)
= δk,m · δl,n.

This system inherits in C(T× T) all approximative properties of system (1.3) in C[0, 2π].

2. Approximation by interpolating wavelets in C(T× T)

We denote by sVj(T
2) the subspace of the space C(T×T) of 2π-periodic (in θ and ϕ) functions

on R
2 by setting

sVj(T
2) :=

{ 2j−1∑

k=0

2j−1∑

l=0

Ck,lΦ
j,k
s (θ)Φj,l

s (ϕ) : Ck,l ∈ R for all k, l = 0, 2j − 1
}
.

The interpolation projection of any function F (θ, ϕ) ∈ C(T× T) is defined as follows:

Ss,2jF (θ, ϕ) = P int
sVj(T2)F (θ, ϕ) :=

2j−1∑

k=0

2j−1∑

l=0

F
(2πk

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ). (2.1)
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Obviously, |S2jF (θ, ϕ)| ≤ L2j(θ, ϕ)‖F‖C(T×T) , where L2j (θ, ϕ) is the Lebesgue function of the
operator S2j : C(T× T) → sVj ⊂ C(T× T),

Ls,2j(θ, ϕ) =

2j−1∑

k=0

2j−1∑

l=0

|Φj,k
s (θ)||Φj,l

s (ϕ)| = Ls,2j(θ)Ls,2j(ϕ), (2.2)

and Ls,2j(x) is the Lebesgue function of the projection operator of continuous 2π-periodic functions

on the line on the subspace V j
s (T) ⊂ C(T), which was studied in Lemmas 2 and 3 of the paper [10]

under the condition of smoothness of the functions ϕ̂s(ω) on R for s = 2, 3. Using this lemmas and
the remark to them on page 265 of the mentioned paper, for the 2π/2j -periodic Lebesgue function
Ls,2j(x) with s = 2, 3, we obtain

Ls,2j(x) ≤
( (1+ε)/2∨

1/2

(ϕ̂2
ε(ω))

′
ω

∣∣∣sin 2
j−1x

2j−1x

∣∣∣+ δs,2

(1+ε)/2∨

1/2

(ϕ̂ε(ω)ϕ̂ε(ω − 1))′ω
sin2 ε2j−2x

|2j−1x|

)
| sin 2j−1x|
|2j−1x| +

+

[ (1+ε)/2∨

1/2

(ϕ̂2
ε(ω))

′
ω + δs,2

(1+ε)/2∨

1/2

(ϕ̂ε(ω)ϕ̂ε(ω − 1))′ω

( 4

π2
+ ε+

1− 4/π2

22j

)
| sin 2j−1x|

for |x| < 2π/2j+1. We do not write an analogous estimate for s = 1, noting only that this estimate
is similar to the latter one with replacing δs,2 by δs,1 and ϕ̂ε(ω) by ϕ̂1,ε(ω) from (1.5).

For brevity, we use the following formulas from [10]:

∆ε =
[1
2
,
1 + ε

2

]
, ϕ̂3(ω) = ϕ̂2

ε(ω), β(ω) = ϕ̂ε(ω)ϕ̂ε(ω − 1).

Theorem 1. Assume that, in addition to the conditions2 on ϕ̂s(ω) imposed in the description

of formula (1.4), the functions ϕ̂3(ω) and β(ω) are smooth in a neighbourhood of the interval

[(1− ε)/2, (1 + ε)/2]. Then the Lebesgue constants Ls,2j(θ, ϕ), s = 2, 3, in (2.2) satisfy on their

period [−2π/2j+1, 2π/2j+1]× [−2π/2j+1, 2π/2j+1] the estimates

Ls,2j(θ, ϕ) ≤
{[∨

∆ε

ϕ̂′
3(ω)

∣∣∣sin 2
j−1ϕ

2j−1ϕ

∣∣∣+ δs,2
∨

∆ε

β′(ω)
sin2(ε2j−1ϕ/2)

|2j−1ϕ|

] | sin 2j−1ϕ|
|2j−1ϕ| +

+

[∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′
3(ω)

]( 4

π2
+

1− 4/π2

22j

)
| sin 2j−1ϕ|

}
×

×
{[∨

∆ε

ϕ̂′
3(ω)

| sin 2j−1θ|
2j−1θ

+ δs,2
∨

∆ε

β′(ω)
sin2(ε2j−1θ/2)

|2j−1θ|

] | sin 2j−1θ|
|2j−1θ| +

+

[∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′(ω)

]( 4

π2
+

1− 4/π2

22j

)
| sin 2j−1θ|

}
.

(2.3)

P r o o f follows from the above estimate and (2.2). �

We note that, to estimate the function (2.2) on the square T×T, it is needed to write its estimate
on every small square [2π(2k − 1)/2j+1, 2π(2k + 1)/2j+1]× [2π(2l − 1)/2j+1, 2π(2l + 1)/2j+1] con-
tained in T×T by replacing on the right-hand-side of (2.3) ϕ by (ϕ−2πk/2j) and θ by (θ−2πl/2j).

2Actually, this is a condition to estimate Ls,2j (x) in [10] allowing to drop terms outside the integrals
when integrating by parts.
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To estimate the Lebesgue constant, which is the norm in C(T × T) of the function Ls,2j(θ, ϕ) co-

inciding with the norm of the operator ‖S2j‖ = ‖S2j‖C(T×T)
C(T×T), it is sufficient to estimate it on any

period, in particular, for |θ| < π/2j and |ϕ| < π/2j . Estimating the right-hand side of (2.3) with
the use of the fact that | sinx|/|x| ≤ 1 for |x| < π/2, we obtain the following result.

Corollary 1. Assume that the conditions of Theorem 1 are satisfied. Then the norm of the

operators of the interpolation projection (2.1) from C(T× T) to the subspace sVj(T
2) ⊂ C(T× T)

satisfies the estimate

‖Ss,2j‖ ≤
(∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′(ω)

)2( 4

π2
+ ε+

1− 4/π2

22j

)2
. (2.4)

For one-dimensional periodic wavelets, the following well-known and easily verified remarkable
fact holds: for any ε ∈ (0, 1/3], the operator of interpolation (and also orthogonal) projection on
the subspaces Vj of periodic multiresolution analysis generated by any Meyer type function ϕ̂ε(ω)
is the identity operator on the subspace of trigonometric polynomials of order Nε = [2j−1(1 − ε)],
where [a] is the integer part of a for a ≥ 0.

We verify in what form this property is preserved for the operators (2.1). Computing Ss,2jg(θ, ϕ)
for g(θ, ϕ) = eiµθeiηϕ and integer µ and η, we have

Ss,2jg(θ, ϕ) =

2j−1∑

k=0

2j−1∑

l=0

e2πiµk/2
j

e2πiηl/2
j

Φj,k,l
s (θ, ϕ) =

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ

2j−1∑

k=0

e2πi(µ−ν)k/2j
∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ
2j−1∑

l=0

e2πi(η−ν′)l/2j =

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ

e2πi(µ−ν) − 1

e2πi(µ−ν)/2j − 1

∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ e2πi(η−ν′) − 1

e2πi(η−ν′)/2j − 1
=

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ2jδµ,ν

(µ−ν′)/2j∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ2jδν′,η = eiµθeiηϕϕ̂s

( µ

2j

)
ϕ̂s

( η

2j

)
,

which coincides with g(θ, ϕ) for |µ|/2j ≤ (1− ε)/2 and |η|/2j ≤ (1− ε)/2 (where ϕ̂s(ω) ≡ 1).

Thus, we obtain the following property of interpolation projections on the subspaces sVj(T
2).

Assertion 1. For the trigonometric polynomials of two variables

tn,m(θ, ϕ) =

n∑

µ=−n

m∑

η=−m

aµ,νe
i(µθ+νϕ)

of order n in the variable θ and order m in the variable ϕ, the equalities

Ss,2j tn,m(θ, ϕ) ≡ tn,m(θ, ϕ) (2.5)

hold for n and m not greater than Nε,j = [2j−1(1− ε)] and s = 1, 2, 3.

Note that the order Nε,j of the polynomials in (2.5) is allowed in each of the variables θ and
ϕ, not just in the totality of variables (when the summation in the formula for tn,m(θ, ϕ) is taken
over µ and ν such that |µ|+ |ν| ≤ Nε,j).
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According to the usual Lebesgue scheme, from inequality (2.4) and Assertion 1, we easily obtain
an estimate of the error of approximation of continuous 2π-periodic functions of two variables by
their interpolation projections on sVj(T

2). In view of the importance of this estimate for practical
applications of interpolating wavelets, we state it as a theorem. We denote by En(F )C(T×T) the
best approximation in the metric of C(T×T) of continuous 2π-periodic functions F on the square
T× T by trigonometric polynomials of order n in each variable.

Theorem 2. Under the conditions of Theorem 1 on ϕ̂s(ω), s = 2, 3, any function F (θ, ϕ) in

C(T× T) satisfies the estimates

‖F (θ, ϕ) − Ss,2jF (θ, ϕ)‖C(T×T) ≤ (1 + ‖Ss,2j‖)ENε,j
(F )C(T×T). (2.6)

P r o o f. To justify this estimate, we note that, applying formula (2.5) to the polynomial tNε,j

of the best approximation of the function F in C(T× T), we obtain

‖F (θ, ϕ) − Ss,2jF (θ, ϕ)‖ = ‖(F (θ, ϕ) − tNε,j
(θ, ϕ)) + Ss,2j

(
tNε,j

(θ, ϕ)− F (θ, ϕ)
)
‖,

From this, using the triangle inequality for norms, the definition of ‖Ss,2j‖, and Corollary 1, we
get (2.6). �

An estimate of the best approximations En(F )C(T×T) of the Jackson type in terms of the
modules of continuity or the parameters K and α of the Hölder class

KHα = {f : |f(x+∆x)− f(x)| ≤ K|∆x|α}

can be found in the known monographs on approximation theory.
The systems of functions

{Φj+1,2k+1,2l+1
s (θ, ϕ) : k = 0, 2j − 1}, j ∈ Z+ (s = 1, 2, 3), (2.7)

additional to (1.7) are the interpolation bases of the subspaces sWj(T
2) (sVj+1(T

2) =s Vj(T
2) ⊕s

Wj(T
2), j ∈ Z+). By their means, any function g ∈s Vj+1(T

2) is uniquely represented in the form

g = P int
sVj

g + P int
sWj

(g − P int
sVj

g), (2.8)

which is easily derived from the fact that sWj ⊂ sVj+1. For each s = 1, 2, 3, the family of sys-
tems (2.7) over all j ∈ Z+ together with Φ0,0 ≡ 1 is an interpolation basis of the whole space
C(T× T), so that any function F (θ, ϕ) is expanded in the series

F (θ, ϕ) = F (0, 0) +
∞∑

j=0

2j−1∑

k,l=0

cj,k,lΦ
j+1,2k+1,2l+1
s (θ, ϕ) (2.9)

converging uniformly in the square T × T and, hence, in R
2. According to the usual scheme, the

coefficients of this series are calculated recursively in j in terms of the grid values of the function F
and the partial sums

Σj−1(θ, ϕ;F ) = F (0, 0) +

j−1∑

λ=0

2λ−1∑

µ,ν=0

cλ,µ,νΦ
λ+1,2µ+1,2ν+1
s (θ, ϕ) (2.10)

of the same series, namely

cj,k,l = F
(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
−Σj−1

(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
.
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It follows from (2.8) that the sum Σj−1(θ, ϕ;F ) coincides with P int
sVj

F (θ, ϕ)=Ss,2jF (θ, ϕ) (see (2.1)),
so that we can write the values cj,k,l without recurrence:

cj,k,l = (F − P int
sVj

F )
(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
. (2.11)

Hence, it is easily deduced that the series (2.9) with the coefficients (2.11) coincides with the series

F (θ, ϕ) = F (0, 0) +

∞∑

j=0

(Ss,2j+1F (θ, ϕ)− Ss,2jF (θ, ϕ)) (2.12)

converging uniformly in T× T by Theorem 2. The partial sum of order J of the latter series is

F (0, 0) +
J−1∑

j=0

(Ss,2j+1 − Ss,2j)F (θ, ϕ) = Ss,2JF (θ, ϕ) = ΣJ−1(θ, ϕ;F ).

3. Interpolating wavelets on the sphere and their application

to the approximation of functions in C(S)

In the second section, unlike the first section, the arguments (θ, ϕ) of the functions F and Φj,k,l
s

were treated as the Cartesian coordinates of points of the square T × T on the opposite sides of
which the values of any function in C(T× T) coincide in view of its 2π-periodicity. Moreover, the
function F (θ, ϕ) constructed on S̃(2) by formula (1.1), if interpreted as a function on the square
T × T, has the additional feature that it is constant on each of the sides θ = 0 and θ = π of the
square.

Let F be a function defined on the sphere S and continuously depending on the points of the
sphere. For instance, F represented as F (x1, x2, x3) is a function continuous in all coordinates
connected by the relation x21 + x22 + x23 = 1. In particular, F is also continuous at the poles N
and S of the sphere S. Therefore, after the change x1 = cosϕ sin θ, x2 = cosϕ cos θ, x3 = sin θ,
the function F becomes a function of the coordinates ϕ ∈ T = [0, 2π) and θ ∈ [0, π] with the
following specificity: F (N) and F (S) do not depend on θ, since limθ→0 F (θ, ϕ) = F (N) and
limθ→π F (θ, ϕ) = F (S) for any ϕ ∈ [0, 2π]. Thus, the function F (θ, ϕ) defined on the double
sphere S̃(2) by formula (1.1) and glued from the continuous functions f(θ, ϕ) on Mϕ for θ ↑π0 and

f(2π − θ, ϕ± π) on Mϕ±π for θ ↑2ππ is continuous on S̃(2), since the values of the function F (0, ϕ)
and the values of the function F (π, ϕ) do not depend on ϕ at the gluing points θ = 2π and θ = π.

We note that the values of the function F (θ, ϕ) on S (i.e., for θ ↑π0 , ϕ ↑2π0 ) coincide with

the values of the original function f(θ, ϕ). Therefore, approximating F on S̃(2), we simultaneously
approximate f on S. Of course, the latter property could be preserved for any continuous extension
of f from S to S̃(2) \ S. However, if the original function f is smooth on S, i.e., at any point
(x1, x2, x3, f(x1, x2, x3)) (with x21 + x22 + x23 = 1) of the graph surface of f over S, there exists a
tangent plane to the graph, then, obviously, the extension chosen by means of (1.4) preserves the
smoothness of F (θ, ϕ) on any full ϕ-meridian Cϕ and, hence, on the whole double sphere S̃(2), since
there exists a tangent line to the graph of F (θ, ϕ) over any full ϕ-meridian at the points (θ, ϕ) (θ ↑π0 )
which is the section of the tangent plane at the point X(θ, ϕ) ∈ Cϕ by the plane containing Cϕ.

The basis functions Φj,k,l
s (θ, ϕ) are defined on the whole S̃(2) as 2π-periodic in θ and ϕ, since

the parameter θ changes from 0 to 2π on any full ϕ-meridian and the parameter ϕ defining Cϕ

changes similarly. Of course, not each of these functions is constant for θ = 0 (θ = 2π) or θ = π like

F (θ, ϕ) (these are the functions Φj,0,l
s (θ, ϕ) and Φj,2j−1,l

s (θ, ϕ)). However, only the continuity of F
is important to apply formula (2.1), estimates (2.3), (2.4), and (2.6), and formulas (2.9)–(2.12) to
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the functions F (θ, ϕ) defined by (1.1). Thus, the functions Φj,k,l
s (θ, ϕ) defined by (1.7) determine

multiresolution analysis on S̃(2), i.e. the subspaces sVj(S̃(2)) and sWj(S̃(2)). In so doing, a pair

(θ, ϕ) should be treated everywhere as parameters defining the points M(θ, ϕ) on S̃(2). The only
useful thing remaining is to rewrite formulas (2.1) in terms of the function f(θ, ϕ) on S defining
F (θ, ϕ) on S̃(2). Using (2.1) and (1.1), we set

P int
sVj

F (θ, ϕ) =

2j−1−1∑

k=0

2j−1∑

l=0

f
(2πk

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ)+

+
2j−1∑

k=2j−1

( 2j−1−1∑

l=0

f
(2π(2j − k)

2j
,
2π(l + 2j−1)

2j

)
Φj,k,l
s (θ, ϕ)+

2j−1∑

l=2j−1

f
(2π(2j − k)

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ)

)
.

By Theorem 2, one can estimate the error of approximation of the function F (θ, ϕ) by means
of P int

sVj
F (θ, ϕ) in terms of the best approximation ENε,l

(F )
C(S̃(2))

. In real applied problems, it

is unlikely to be required to approximate functions defined on both inner and outer sides of the
sphere S. Therefore, to approximate the original function f(θ, ϕ), it is sufficient to estimate the
deviation |f(θ, ϕ)− P int

sVj
F (θ, ϕ)|C([0,π]×T) that does not exceed the approximation error (2.6).

There are studies of the problem of approximation by trigonometric polynomials on an interval
less than the period. Here, one can expect an essential improvement of the estimate (2.6) by
learning to use the specificity of the function f on S, in particular, its singularities on S which
make it hardly changing in a neighborhood of the sides of the rectangle [0, π] × T with θ = 0 and
θ = π on which the function f(θ, ϕ) is naturally transferred from S.

Until now, we have discussed the use of interpolation properties of the wavelets Φj,k,l
s (θ, ϕ). As

noted, in view of (1.6) the systems {2j/2Φj,k
s (x) : k = 0, 2j − 1} are orthonormal for s = 1 or s = 2

and for every j ∈ N. This implies that, for any j ∈ N, the systems {2j/2Φj,k,l
2 (θ, ϕ) : k, l = 0, 2j − 1}

are also orthonormal:
( 1

2π

)2 ∫ 2π

0

∫ 2π

0
2j/2Φj,k,l

2 (θ, ϕ)2j/2Φj,m,n
2 (θ, ϕ)dθdϕ =

1

2π

∫ 2π

0
2j/2Φj,k

2 (θ)Φj,m
2 (θ)dθ×

× 1

2π

∫ 2π

0
2j/2Φj,l

2 (ϕ)Φj,n
2 (ϕ)dϕ = δk,m · δl,n =

{
1, (k, l) = (m,n),

0, (k, l) 6= (m,n).

However, the question on the application of the orthonormality properties of these systems to the
approximation of functions on the sphere in L2(S)-norm requires separate consideration.

4. Conclusion

In this paper, we have considered the question of approximation of continuous functions on
the sphere S ⊂ R

3 and have proposed once more approach to the construction of corresponding
interpolating wavelets. Due to a special double expansion of the sphere, this approach reduces to
the simple and well-studied problem on the construction of interpolating periodic wavelets on the
plane R

2. Two of the constructed wavelet systems are orthogonal on the expanded sphere S. This
property can be useful when the approximated function is inaccurately defined (for instance, is
obtained experimentally). The problem of accuracy of approximation of functions on the sphere
in L2 was not studied in this paper.
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