Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93063
Title: On An Extremal Problem for Polynomials with Fixed Mean Value
Authors: Babenko, A. G.
Issue Date: 2016
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Babenko A. G. On An Extremal Problem for Polynomials with Fixed Mean Value / A. G. Babenko. — DOI 10.15826/umj.2016.1.001. — Text : electronic // Ural Mathematical Journal. — 2016. — Volume 2. — № 1. — P. 3-8.
Abstract: Let T+n be the set of nonnegative trigonometric polynomials τn of degree n that are strictly positive at zero. For 0≤α≤2π/(n+2), we find the minimum of the mean value of polynomial (cosα−cosx)τn(x)/τn(0) over τn∈T+n on the period [−π,π).
Keywords: TRIGONOMETRIC POLYNOMIALS
EXTREMAL PROBLEM
URI: http://elar.urfu.ru/handle/10995/93063
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2016.1.001
Sponsorship: The paper was originally published in a hard accessible collection of articles Approximation of Functionsby Polynomials and Splines (The Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk, 1985), p. 15-22 (in Russian).
The author is grateful to Professor V.V. Arestov for the statement of the problem as well as to Doctor E.E. Berdysheva for the excellent translation of the paper into English.
Origin: Ural Mathematical Journal. 2016. Volume 2. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2016_2_1_3-8.pdf139,69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons