Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/92750
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khlopin, D. V. | en |
dc.date.accessioned | 2020-10-20T16:37:02Z | - |
dc.date.available | 2020-10-20T16:37:02Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Khlopin D. V. A Maximum Principle for One Infinite Horizon Impulsive Control Problem / D. V. Khlopin. — DOI 10.1016/j.ifacol.2018.11.383 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 213-218. | en |
dc.identifier.issn | 2405-8963 | - |
dc.identifier.other | https://doi.org/10.1016/j.ifacol.2018.11.383 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 4dbb860e-1880-44d6-b694-985ad9706ce3 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058244670 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/92750 | - |
dc.description.abstract | The paper is concerned with a nonlinear impulsive control system with trajectories of bounded variation. Necessary conditions of optimality in a form of the Maximum Principle are derived for a class of infinite horizon impulsive optimal control problems. For the overtaking optimality criterion under the assumption that all gradients of the payoff function are bounded, we construct a transversality condition for the adjoint variable in terms of limit points of the gradient of the payoff function. In the case when this limit point is unique, this condition supplements the system of the Maximum Principle and determines a unique solution of the adjoint system. This solution can be written explicitly with the use of the (Cauchy type) formula proposed earlier by S.M. Aseev and A.V. Kryazhimskii. The key idea of the proof is the application of the convergence of subdifferentials within Halkin's scheme. © 2018 | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | IFAC-PapersOnLine | en |
dc.subject | CONVERGENCE OF SUBDIFFERENTIALS | en |
dc.subject | IMPULSIVE CONTROL | en |
dc.subject | INFINITE HORIZON | en |
dc.subject | MAXIMUM PRINCIPLE | en |
dc.subject | NECESSARY CONDITIONS | en |
dc.subject | OVERTAKING OPTIMAL | en |
dc.subject | OPTIMAL CONTROL SYSTEMS | en |
dc.subject | IMPULSIVE CONTROLS | en |
dc.subject | INFINITE HORIZONS | en |
dc.subject | NECESSARY CONDITIONS | en |
dc.subject | OVERTAKING OPTIMAL | en |
dc.subject | SUBDIFFERENTIALS | en |
dc.subject | MAXIMUM PRINCIPLE | en |
dc.title | A Maximum Principle for One Infinite Horizon Impulsive Control Problem | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 38639363 | - |
dc.identifier.doi | 10.1016/j.ifacol.2018.11.383 | - |
dc.identifier.scopus | 85058244670 | - |
local.affiliation | Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, 620990, Russian Federation | |
local.affiliation | Ural Federal University, Yekaterinburg, 620083, Russian Federation | |
local.contributor.employee | Khlopin, D.V., Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, 620990, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federation | |
local.description.firstpage | 213 | - |
local.description.lastpage | 218 | - |
local.issue | 51 | - |
local.volume | 32 | - |
dc.identifier.wos | 000453278300042 | - |
local.identifier.pure | 8414163 | - |
local.identifier.eid | 2-s2.0-85058244670 | - |
local.identifier.wos | WOS:000453278300042 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1016-j.ifacol.2018.11.383.pdf | 409,81 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.