Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92750
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhlopin, D. V.en
dc.date.accessioned2020-10-20T16:37:02Z-
dc.date.available2020-10-20T16:37:02Z-
dc.date.issued2018-
dc.identifier.citationKhlopin D. V. A Maximum Principle for One Infinite Horizon Impulsive Control Problem / D. V. Khlopin. — DOI 10.1016/j.ifacol.2018.11.383 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 213-218.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.383pdf
dc.identifier.other1good_DOI
dc.identifier.other4dbb860e-1880-44d6-b694-985ad9706ce3pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058244670m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92750-
dc.description.abstractThe paper is concerned with a nonlinear impulsive control system with trajectories of bounded variation. Necessary conditions of optimality in a form of the Maximum Principle are derived for a class of infinite horizon impulsive optimal control problems. For the overtaking optimality criterion under the assumption that all gradients of the payoff function are bounded, we construct a transversality condition for the adjoint variable in terms of limit points of the gradient of the payoff function. In the case when this limit point is unique, this condition supplements the system of the Maximum Principle and determines a unique solution of the adjoint system. This solution can be written explicitly with the use of the (Cauchy type) formula proposed earlier by S.M. Aseev and A.V. Kryazhimskii. The key idea of the proof is the application of the convergence of subdifferentials within Halkin's scheme. © 2018en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectCONVERGENCE OF SUBDIFFERENTIALSen
dc.subjectIMPULSIVE CONTROLen
dc.subjectINFINITE HORIZONen
dc.subjectMAXIMUM PRINCIPLEen
dc.subjectNECESSARY CONDITIONSen
dc.subjectOVERTAKING OPTIMALen
dc.subjectOPTIMAL CONTROL SYSTEMSen
dc.subjectIMPULSIVE CONTROLSen
dc.subjectINFINITE HORIZONSen
dc.subjectNECESSARY CONDITIONSen
dc.subjectOVERTAKING OPTIMALen
dc.subjectSUBDIFFERENTIALSen
dc.subjectMAXIMUM PRINCIPLEen
dc.titleA Maximum Principle for One Infinite Horizon Impulsive Control Problemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38639363-
dc.identifier.doi10.1016/j.ifacol.2018.11.383-
dc.identifier.scopus85058244670-
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Yekaterinburg, 620990, Russian Federation
local.affiliationUral Federal University, Yekaterinburg, 620083, Russian Federation
local.contributor.employeeKhlopin, D.V., Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, 620990, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federation
local.description.firstpage213-
local.description.lastpage218-
local.issue51-
local.volume32-
dc.identifier.wos000453278300042-
local.identifier.pure8414163-
local.identifier.eid2-s2.0-85058244670-
local.identifier.wosWOS:000453278300042-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.383.pdf409,81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.