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Abstract: The paper is concerned with a nonlinear impulsive control system with trajectories
of bounded variation. Necessary conditions of optimality in a form of the Maximum Principle
are derived for a class of infinite horizon impulsive optimal control problems. For the overtaking
optimality criterion under the assumption that all gradients of the payoff function are bounded,
we construct a transversality condition for the adjoint variable in terms of limit points of the
gradient of the payoff function. In the case when this limit point is unique, this condition
supplements the system of the Maximum Principle and determines a unique solution of the
adjoint system. This solution can be written explicitly with the use of the (Cauchy type) formula
proposed earlier by S. M. Aseev and A. V. Kryazhimskii. The key idea of the proof is the
application of the convergence of subdifferentials within Halkin’s scheme.
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1. INTRODUCTION

Impulsive control problem is a useful mathematical ide-
alization of the degenerate control processes. Everyday
life examples of impulsive systems can also be found
in mechanics, medicine, et cetera. The necessary condi-
tions of optimality for these problems are well-known,
see, for example, Blaquiere (1985), Rempala et al. (1988),
Zavalischin et al. (2013), Silva et al. (1997), Miller et al.
(2003), Dykhta et al. (2003), Goncharova et al. (2015).

In this paper we consider the possibility of transferring
the Pontryagin Maximum Principle obtained in Silva et
al. (1997) to infinite horizon. The general scheme of trans-
ferring the Pontryagin Maximum Principle for infinite
horizon optimal control problems is well known, it was
proposed in Halkin (1974); however, this scheme effectively
disables the transversality condition on the adjoint vari-
able, which leads to a much too broad family of solutions of
the adjoint system. One of the means to explicitly select a
unique solution of the Pontryagin Maximum Principle was
proposed in Aseev at al. (2007) and involved the use of the
(Cauchy type) formula. This method can be extended to
a sufficiently broad class of control systems without any
assumptions on the growth rate of any variable, payoff
functions, or their gradients. In addition, every limit point
of the gradient of the payoff function can be applied as the
initial state of the adjoint system—the co-state arc at zero
time. The key idea of this approach is the application of
the convergence of subdifferentials.

As a whole, the results described below combine the Pon-
tryagin Maximum Principle proved in Silva et al. (1997)
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with the application of the convergence of subdifferentials
for an infinite horizon optimal control problem as proposed
in Khlopin (2018). Two simplifying assumptions will be
imposed, which may have been avoided: first, assume that
all gradients of the payoff function are bounded; second,
assume that the impulsive dynamic part is independent of
the state variable x.

Note that the necessary conditions Blaquiere (1985), Rem-
pala et al. (1988), Pereira et. al. (2011) of optimality for
infinite horizon impulsive optimal control problem, which
the author is aware of, contain the transversality condi-
tions; however, these conditions work under assumption
that the value function (or its gradients) are known. In
this paper, the value function is not considered, moreover,
the optimal value could be infinite everywhere.

The structure of the paper is as follows: first, we introduce
the general statement, necessary definitions and notions,
in particular, the variational analysis definitions. In Sec-
tion 3, we consider the Pontryagin Maximum Principle, the
corresponding adjoint system, and one limit modification
of the transversality condition. In Section 4, we formulate
the main result and discuss its correspondence with the
Cauchy-type formula. In Section 5, we show the proof of
the theorem.

2. ELEMENTARY DEFINITIONS AND STATEMENTS

Fix the state space of the initial control system—a certain
finite-dimensional Euclidean space Rm. Denote by M the
set of all regular Borel nonnegative-valued measures µ such
that µ([0, T ]) is finite for all positive T .

Consider the infinite horizon minimization problem
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Minimize l(b) +

∫ ∞

0

f0(t, x, u) dt (1a)

dx = f(t, x, u) dt+ g(t)µ(dt), x(0) ∈ C, (1b)

u(t) ∈ U, µ ∈ M. (1c)

Here x is a state variable that assumes values from Rm;
the scalar functions l and f0 and the vector functions f
and g are assumed to be given; and the control consists
of the measure µ ∈ M and a Borel measurable function u
that assumes the values from a nonempty closed subset U
of a finite-dimensional Euclidean space.

We assume the following conditions to hold:

• C is a closed subset of Rm;
• l is a locally Lipschitz continuous scalar function of
x ∈ Rm;

• for all u ∈ U , the functions [0,∞) × Rm × U �
(t, x, u) �→ f(t, x, u) ∈ Rm and [0,∞) × Rm ×
U � (t, x, u) �→ f0(t, x, u) ∈ R and their derivatives
with respect to x are L × B-measurable in (t, u)
and Lipschitz continuous in x; also, f satisfies the
sublinear growth condition with respect to x.

• the function g : [0,∞) → Rm is continuous.

Denote by U the set of all bounded on every compact
Borel measurable mappings u : [0,∞) → U . Also, denote
by BV +([0,∞);Rm) the space of all right continuous
on (0,∞) functions x : [0,∞) → Rm such that for each
positive T > 0 the total variation of x|[0,T ] is bounded.

Following Silva et al. (1997), we say that a function x ∈
BV +([0,∞);Rm) is a robust solution to (1b) for an initial
condition b ∈ Rm, a control u ∈ U , and a measure µ if

x(τ) = b+

∫ τ

0

f(t, x(t), u(t)) dt+

∫

(0,τ ]

g(t)µ(dt) ∀τ ≥ 0.

Denote this solution of system (1b) by y(b, 0, u, µ; ·). It is
easy to see that under the assumptions above it can always
be extended to the whole half-line [0,∞).

Note that, for fixed u and µ, if, for two arbitrary ini-
tial conditions b1, b2 ∈ Rm, we have y(b1, 0, u, µ; t) =
y(b2, 0, u, µ; t), then b1 = b2. Then, for a positive θ, some
b ∈ Rm, a control u ∈ U , and a measure µ, there exists
a unique solution y(b, θ, u, µ; ·) of (1b) with the initial
condition x(θ) = b.

Let us now introduce a scalar function J as follows: for all
b ∈ Rm, u ∈ U , and θ ≥ 0, T > θ,

J(b, θ;u, µ, T ) =

∫ T

θ

f0
(
t, y(b, θ, u, µ; t), u(t)

)
dt.

Call a triplet (x, u, µ) ∈ BV +([0,∞),Rm) × U × M an
admissible process if x(0) ∈ C, x(·) = y(x(0), 0, u, µ; ·).
Call an admissible process (x̃, ũ, µ̃) overtaking optimal
(see Carlson (1990)) for problem (1a)–(1c) if, for every
admissible process (x, u, µ), it holds that

lim inf
T→∞

(
l(x(0))− l(x̃(0))

+

∫ T

0

[f0(t, x(t), u(t))− f0(t, x̃(t), ũ(t))] dt
)
≥ 0.

Hereinafter assume that a certain admissible process
(x̃, ũ, µ̃) is overtaking optimal for problem (1a)–(1c). For
brevity, let us also introduce

J̃(b;T ) = J(b, 0; ũ, µ̃, T ) ∀T > 0, b ∈ Rm,

ỹ(b;T ) = y(b, 0; ũ, µ̃, T ) ∀T > 0, b ∈ Rm.

We will also need certain elementary definitions of the
variational analysis Mordukhovich (2006).

Consider a lower semicontinuous function h : Rm → R;
define epih(·) by the rule

epih(·) �
= {(ξ, r) | ∀ξ ∈ Rm, r ≥ h(ξ)}.

Further, for all ξ ∈ Rm, by ∂̂h(ξ) denote the Fréchet
subdifferential of this function at the point ξ ∈ Rm;
it consists of all gradients h̄′(ξ) ∈ (Rm)∗ of a Fréchet
differentiable function h̄ : Rm → R ∪ {+∞} such that
h(ξ) = h̄(ξ) and h̄(ξ′) ≤ h(ξ′) hold for all ξ′ ∈ Rm.
Denote by ∂h(ξ) the limiting subdifferential of h at ξ; it
consists of all ζ ∈ (Rm)∗ such that, for some sequences of

yn ∈ Rm, ζn ∈ ∂̂h(yn), it holds that

yn → ξ, ζn → ζ, h(yn) → h(ξ).

We will also need the singular limiting subdifferential.
Denote by ∂∞h(ξ) the singular limiting subdifferential of
h at ξ; it consists of all ζ ∈ (Rm)∗ such that, for some

sequences of λn > 0, yn ∈ Rm, ζn ∈ ∂̂h(yn), it holds that

λn → 0, yn → ξ, λnζn → ζ, h(yn) → h(ξ).

Denote by NC(ξ) the limiting normal cone of C at ξ.

3. THE PONTRYAGIN MAXIMUM PRINCIPLE AND
ITS ADDITIONAL CONDITIONS

Let the Hamilton–Pontryagin function H : Rm × (Rm)∗ ×
U × [0,∞)

2 �→ R be given by the following: for all
(x, ψ, u, λ, t) ∈ Rm × (Rm)∗ × U × [0,∞)2,

H(x, ψ, u, λ, t)
�
= ψf

(
t, x, u

)
− λf0

(
t, x, u

)
.

Let us introduce the relations of the Pontryagin Maximum
Principle:

dx(t) = f
(
t, x(t), ũ(t)

)
dt+ g(t) µ̃(dt); (2a)

−ψ̇(t) =
∂H

∂x

(
x(t), ψ(t), ũ(t), λ, t

)
; (2b)

sup
u∈U

H
(
x(t), ψ(t), u, λ, t

)
(2c)

=H
(
x(t), ψ(t), ũ(t), λ, t

)
a.e. t ≥ 0. (2d)

We will also need the following relations concerning the
impulsive component:

ψ(t)g(t)≤ 0 ∀t ≥ 0; (3)

ψ(t)g(t)≥ 0 ∀t ∈ supp µ. (4)

The conditions imposed above are sufficient to guarantee
Silva et al. (1997) that relations (2a)–(4) are necessary for
impulsive problems on any finite horizon [θ, T ] ⊂ [0,∞).
Applying the Halkin scheme (see Halkin (1974)) directly,
it is easy to show that the relations (2a)–(2c) are also
necessary for infinite horizon optimal control problem
(1a)–(1c) for every overtaking optimal process. However,
the system that will be obtained in such a way will have
no boundary condition on the adjoint variable that would
correspond to the transversality condition at infinity. For
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impulsive problems, such a condition was announced e.g.
in Pereira et. al. (2011), where the key requirement was the
uniqueness of the ω-point of the optimal trajectory and
the total controllability assumption at this point. Under
this requirement, the co-state variable is the subgradient
of the value function. A similar transversality condition
was constructed Cannarsa (2018), Khlopin (2017a), Sagara
(2010) for infinite horizon control problem.

In this paper, we use a slightly different approach: we study
the gradients of the payoff function in the state variable for
fixed optimal control. For infinite horizon control problem,
this approach was realized in Khlopin (2018) for a payoff
function that was Lipschitz continuous in x. To this end,
we consider the following definition Khlopin (2015):

Call a nontrivial solution (x̃, ψ̃, λ̃) of system (2a)–(2b)
an exact limiting solution iff for some sequences of yn ∈
Rm, tn≥ 0, λn > 0, it holds that

tn → ∞, yn → x̃(0), λn → λ̃,

−λn
∂J̃

∂x
(yn; tn) → ψ̃(0), J̃(yn; tn)−J̃(x̃(0); tn) → 0.

(5)

As it is easy to see, it will be worthwhile to check the

existence of ∂J̃
∂x and ∂ỹ

∂x (ξ;T ) under the above-mentioned
conditions. Let us confine ourselves to checking whether
∂ỹ
∂x (ξ;T ) exists for all ξ ∈ Rm, T ≥ 0.

Indeed, fix certain x0 ∈ Rm, T ≥ 0. Evidently, [0,∞) �
t �→ r(t)

�
= ỹ(ξ; t)−x̃(t) is a solution of the Cauchy problem

dx

dt
(t) = f

(
t, x(t) + x̃(t), ũ(t)

)
− f

(
t, x̃(t), ũ(t)

)
,

r(0) = ξ − x̃(0).

Since this is a system of ordinary differential equations
that satisfies the Carathéodori conditions and its right-
hand side is sufficiently smooth in x, its solution smoothly
depends on ξ. But then the map ξ �→ ỹ(ξ; t) is the same.
Moreover, all the desired derivatives can now be expressed
explicitly.

Denote by L the linear space of all real m ×m matrices.
For all ξ ∈ Rm, consider the Cauchy problem

dA(ξ; t)

dt
=

∂f

∂x

(
ỹ(ξ; t), ũ(t)

)
A(ξ; t), A(ξ; 0) = 1L. (6)

and its solution A(ξ; ·) ∈ C([0,∞),L). Then, for all ξ ∈
Rm, T ≥ 0, we obtain

∂ỹ

∂x
(ξ;T ) = A(ξ;T ), (7)

∂J̃

∂x
(ξ;T ) =

∫ T

0

∂f0
∂x

(
t, ỹ(ξ; t), ũ(t)

)
A(ξ; t) dt, (8)

further, for every positive λ, the corresponding solution
(x, ψ) of system (2a)–(2b) satisfies the following Cauchy
formula:

ψ(t)A(x(0); t)− ψ(0) = λ
∂J̃

∂x
(x(0); t) ∀t ≥ 0. (9)

4. THE MAIN RESULT

Theorem 1. Let the process (x̃, ũ, µ̃) be overtaking optimal
for (1a)–(1c).

Assume that, for every bounded neighborhood Ξ of x̃(0),

for all T > 0, ξ ∈ Ξ, the gradients ∂J̃
∂x (ξ;T ) =

∂J
∂x (ξ, 0; ũ, T )

are uniformly bounded.

Then, there exists an exact limiting solution (x̃, ψ̃, 1) of
the Pontryagin Maximum Principle (2a)-(4) such that

ψ̃(0) ∈ ∂l(x̃(0)) +NC(x̃(0)). (10)

In particular, −ψ̃(0) is a partial limit of ∂J
∂x (ξ, 0; ũ, µ̃, T ) as

ξ → x̃(0), T → ∞.

Moreover, for any choice of the unboundedly increasing
sequence of times tn, there exists an exact limit solution
(x̃, ψ̃, 1) of the Pontryagin Maximum Principle (2a)–(2c)

that satisfies (3),(4), (10) such that −ψ̃(0) is a partial limit
of the gradients ∂J

∂x (ξ, 0; ũ, µ̃, tn) as ξ → x̃(0), n → ∞.

In paper Aseev at al. (2007), and then in Aseev at al.
(2012), Khlopin (2013), Aseev at al. (2014), Khlopin
(2015), and Belyakov (2015), for optimal control problems,
there was obtained a series of assumptions on the asymp-
totics of the functions f, f0, J and their derivatives under
which the solution of the Pontryagin Maximum Principle
is uniquely (for a given process) determined by the rules

−ψ̃(0) = lim
T→∞

∂J̃

∂x
(x̃(0);T )

=

∫ ∞

0

∂f0
∂x

(
t, x̃(t), ũ(t)

)
A(x̃(0); t) dt, (11)

λ̃= 1.

Note that, for this formula to be correct, in (11), there

must, at least, exist the limit (as T ↑ ∞) of ∂J̃
∂x (x̃(0), T ).

However, the validity of the formula in (11) does not
guarantee its consistency with the Pontryagin Maximum
Principle. An elementary example of such a control prob-
lem was considered in Khlopin (2017b). We have to impose
a stronger condition: let, as in Khlopin (2018), there be

only the continuity in ξ of the limit (as T ↑ ∞) of J̃(ξ, T )
at ξ = x̃(0), that is,

lim
ξ→x̃(0),T→∞

∂J

∂x
(ξ, 0; ũ, µ̃, T ) ∈ Rm. (12)

In view of this condition, (5) implies (11). So, we obtain

Corollary 2. Under conditions of the theorem, there also
exists a finite limit (12). Then, ψ, λ are uniquely deter-
mined by (2b),(11) and also satisfy (2c), (3), (4), (10).

5. THE PROOF

Proof. Since, for every bounded neighborhood Ξ of the
point x̃(0), the mappings

Ξ � ξ �→ ∂J̃

∂x
(ξ;T ) ∀T > 0,

Ξ � ξ �→ ∂J̃

∂x
(ξ;T )− ∂J̃

∂x
(x̃(0);T ) ∀T > 0

are uniformly (in T > 0) bounded, the mappings Ξ � ξ �→
J̃(ξ;T ) − J̃(x̃(0);T )(∀T > 0) share a common Lipschitz
constant L; they are also uniformly equicontinuous. Since
all these mappings become zero at ξ = x̃(0), they are
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impulsive problems, such a condition was announced e.g.
in Pereira et. al. (2011), where the key requirement was the
uniqueness of the ω-point of the optimal trajectory and
the total controllability assumption at this point. Under
this requirement, the co-state variable is the subgradient
of the value function. A similar transversality condition
was constructed Cannarsa (2018), Khlopin (2017a), Sagara
(2010) for infinite horizon control problem.

In this paper, we use a slightly different approach: we study
the gradients of the payoff function in the state variable for
fixed optimal control. For infinite horizon control problem,
this approach was realized in Khlopin (2018) for a payoff
function that was Lipschitz continuous in x. To this end,
we consider the following definition Khlopin (2015):

Call a nontrivial solution (x̃, ψ̃, λ̃) of system (2a)–(2b)
an exact limiting solution iff for some sequences of yn ∈
Rm, tn≥ 0, λn > 0, it holds that

tn → ∞, yn → x̃(0), λn → λ̃,

−λn
∂J̃

∂x
(yn; tn) → ψ̃(0), J̃(yn; tn)−J̃(x̃(0); tn) → 0.

(5)

As it is easy to see, it will be worthwhile to check the

existence of ∂J̃
∂x and ∂ỹ

∂x (ξ;T ) under the above-mentioned
conditions. Let us confine ourselves to checking whether
∂ỹ
∂x (ξ;T ) exists for all ξ ∈ Rm, T ≥ 0.

Indeed, fix certain x0 ∈ Rm, T ≥ 0. Evidently, [0,∞) �
t �→ r(t)

�
= ỹ(ξ; t)−x̃(t) is a solution of the Cauchy problem

dx

dt
(t) = f

(
t, x(t) + x̃(t), ũ(t)

)
− f

(
t, x̃(t), ũ(t)

)
,

r(0) = ξ − x̃(0).

Since this is a system of ordinary differential equations
that satisfies the Carathéodori conditions and its right-
hand side is sufficiently smooth in x, its solution smoothly
depends on ξ. But then the map ξ �→ ỹ(ξ; t) is the same.
Moreover, all the desired derivatives can now be expressed
explicitly.

Denote by L the linear space of all real m ×m matrices.
For all ξ ∈ Rm, consider the Cauchy problem

dA(ξ; t)

dt
=

∂f

∂x

(
ỹ(ξ; t), ũ(t)

)
A(ξ; t), A(ξ; 0) = 1L. (6)

and its solution A(ξ; ·) ∈ C([0,∞),L). Then, for all ξ ∈
Rm, T ≥ 0, we obtain

∂ỹ

∂x
(ξ;T ) = A(ξ;T ), (7)

∂J̃

∂x
(ξ;T ) =

∫ T

0

∂f0
∂x

(
t, ỹ(ξ; t), ũ(t)

)
A(ξ; t) dt, (8)

further, for every positive λ, the corresponding solution
(x, ψ) of system (2a)–(2b) satisfies the following Cauchy
formula:

ψ(t)A(x(0); t)− ψ(0) = λ
∂J̃

∂x
(x(0); t) ∀t ≥ 0. (9)

4. THE MAIN RESULT

Theorem 1. Let the process (x̃, ũ, µ̃) be overtaking optimal
for (1a)–(1c).

Assume that, for every bounded neighborhood Ξ of x̃(0),

for all T > 0, ξ ∈ Ξ, the gradients ∂J̃
∂x (ξ;T ) =

∂J
∂x (ξ, 0; ũ, T )

are uniformly bounded.

Then, there exists an exact limiting solution (x̃, ψ̃, 1) of
the Pontryagin Maximum Principle (2a)-(4) such that

ψ̃(0) ∈ ∂l(x̃(0)) +NC(x̃(0)). (10)

In particular, −ψ̃(0) is a partial limit of ∂J
∂x (ξ, 0; ũ, µ̃, T ) as

ξ → x̃(0), T → ∞.

Moreover, for any choice of the unboundedly increasing
sequence of times tn, there exists an exact limit solution
(x̃, ψ̃, 1) of the Pontryagin Maximum Principle (2a)–(2c)

that satisfies (3),(4), (10) such that −ψ̃(0) is a partial limit
of the gradients ∂J

∂x (ξ, 0; ũ, µ̃, tn) as ξ → x̃(0), n → ∞.

In paper Aseev at al. (2007), and then in Aseev at al.
(2012), Khlopin (2013), Aseev at al. (2014), Khlopin
(2015), and Belyakov (2015), for optimal control problems,
there was obtained a series of assumptions on the asymp-
totics of the functions f, f0, J and their derivatives under
which the solution of the Pontryagin Maximum Principle
is uniquely (for a given process) determined by the rules

−ψ̃(0) = lim
T→∞

∂J̃

∂x
(x̃(0);T )

=

∫ ∞

0

∂f0
∂x

(
t, x̃(t), ũ(t)

)
A(x̃(0); t) dt, (11)

λ̃= 1.

Note that, for this formula to be correct, in (11), there

must, at least, exist the limit (as T ↑ ∞) of ∂J̃
∂x (x̃(0), T ).

However, the validity of the formula in (11) does not
guarantee its consistency with the Pontryagin Maximum
Principle. An elementary example of such a control prob-
lem was considered in Khlopin (2017b). We have to impose
a stronger condition: let, as in Khlopin (2018), there be

only the continuity in ξ of the limit (as T ↑ ∞) of J̃(ξ, T )
at ξ = x̃(0), that is,

lim
ξ→x̃(0),T→∞

∂J

∂x
(ξ, 0; ũ, µ̃, T ) ∈ Rm. (12)

In view of this condition, (5) implies (11). So, we obtain

Corollary 2. Under conditions of the theorem, there also
exists a finite limit (12). Then, ψ, λ are uniquely deter-
mined by (2b),(11) and also satisfy (2c), (3), (4), (10).

5. THE PROOF

Proof. Since, for every bounded neighborhood Ξ of the
point x̃(0), the mappings

Ξ � ξ �→ ∂J̃

∂x
(ξ;T ) ∀T > 0,

Ξ � ξ �→ ∂J̃

∂x
(ξ;T )− ∂J̃

∂x
(x̃(0);T ) ∀T > 0

are uniformly (in T > 0) bounded, the mappings Ξ � ξ �→
J̃(ξ;T ) − J̃(x̃(0);T )(∀T > 0) share a common Lipschitz
constant L; they are also uniformly equicontinuous. Since
all these mappings become zero at ξ = x̃(0), they are
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also uniformly bounded, therefore, the family of these
mappings is precompact. Hence, the closure of

{Rm � ξ �→ J̃(ξ;T )− J̃(x̃(0);T ) |T > 0}
is compact in the compact-open topology.

Fix an arbitrary unboundedly increasing sequence of pos-
itive tn. Removing some elements if necessary, it is safe to
assume that the mappings Rm � ξ �→ J̃(ξ; tn)− J̃(x̃(0); tn)
converge to a certain locally Lipschitz continuous mapping
uniformly on every compact.

Note that, for all ξ ∈ Rm, T ≥ 0, tk > T , it holds that

J̃(ξ;T ) = J̃(ξ, tk)− J(ỹ(ξ, T ), T ; ũ, µ̃, tk).

Since for all ξ ∈ Rm, t ≥ 0 there exists a vector ξ1 =
y(ξ, t, ũ, µ̃; 0) ∈ Rm such that ξ = ỹ(ξ1, t), we obtain

J(ξ, t; ũ, µ̃, tk)− J(x̃(t), t; ũ, µ̃, tk)

= J(ξ1, 0; ũ, µ̃, tk)− J(ξ1, 0; ũ, µ̃, t)

−J(x̃(0), 0; ũ, µ̃, tk) + J(x̃(0), 0; ũ, µ̃, t)

= J̃(y(ξ, t, ũ, µ̃; 0); tk)− J̃(x̃(0); tk)

−
(
J̃(y(ξ, t, ũ, µ̃; 0); t)− J̃(x̃(0); t)

)
.

Now, for all positive t and vector ξ ∈ Rm, in view of the
choice of tk, there exists a finite limit

J∗(ξ, t)
�
= lim

k→∞

[
J(ξ, t; ũ, µ̃, tk)−J(x̃(t), t; ũ, µ̃, tk)

]
.(13)

Moreover, this limit is uniform in every compact subset of
the set Ξ ⊂ Rm, and the mapping ξ �→ J∗(ξ, t) is bounded
and locally Lipschitz continuous because for every τ ≥ t
the mapping ξ �→ J

(
y
(
ξ, t, ũ, µ̃; 0

)
, 0; ũ, µ̃; τ

)
is the same.

Further, for all ξ ∈ Rm, T > 0, for all sufficiently large tk,
(13) implies the following equality:

J̃(ξ;T )− J̃(x̃(0);T )

= J̃(ξ; tk)− J(ỹ(ξ, T ), T ; ũ, µ̃, tk)

−
(
J̃(x̃(0); tk)− J(x̃(T ), T ; ũ, µ̃, tk)

)

= J∗(ξ, 0)− J∗(ỹ(ξ, T ), T ).

Consider the limiting subdifferential ∂xJ∗(ξ; 0) of ξ �→
J∗(ξ; 0). Since the maps ξ → J̃(ξ;T ) are continuously
differentiable, (Mordukhovich, 2006, Proposition 1.107(ii))
yields the following: for all ξ ∈ Rm, T > 0,

∂xJ∗(ξ, 0) =
∂J̃

∂x
(ξ;T ) + ∂ξ

(
J∗(ỹ(ξ, T ), T )

)
.

Recall that the mappings Rm � ξ → ỹ(ξ;T ) are con-
tinuously differentiable, and their derivatives ∂

∂x ỹ(ξ;T ) =
A(ξ;T ) are surjective operators since these are solutions of
linear adjoint system (6) with the condition A(ξ; 0) = 1L.
Hence, in view of the chain rule (Mordukhovich, 2006,
Proposition 1.112(i)), we obtain

∂xJ∗(ξ, 0) =
∂J̃

∂x
(ξ;T ) + ∂xJ∗(ỹ(ξ, T ), T )A(ξ;T ) (14)

for all ξ ∈ Rm, T > 0.

Define the constant map zn ∈ C(R,R) by the rule

zn(t) = J∗(x̃(tn), tn) ∀t ≥ 0.

Since (x̃, ũ, µ̃) is an overtaking optimal process, we obtain

lim inf
n→∞

[
l(b) + J(b, 0;u, µ, tn)− J̃(x̃(0); tn)

]
≥ l(x̃(0))

for all u ∈ U , b ∈ C, µ ∈ M, in particular, for all
n ∈ N, u ∈ U , and µ ∈ M, we have u|[tn,∞) = ũ|[tn,∞)

µ|B([tn,∞)) = µ̃|B([tn,∞)). Now,

l(x̃(0))≤ lim inf
k→∞

[
l(b) + J(b, 0;u, µ, tn)

+J(ỹ(b; tn), tn; ũ, µ̃, tk)− J̃(x̃(0); tk)
]

= l(b) + J(b, 0;u, µ, tn)

−J̃(x̃(0); tn) + J∗(ỹ(b; tn), tn).

holds for all u ∈ U , b ∈ C, n ∈ N, µ ∈ M. Now, for all
n ∈ N, the optimal value of the problem

Minimize l(x(0)) + J∗(x(tn), tn)

+

∫ tn

0

[
f0
(
t, x(t), u(t)

)
− f0

(
t, x̃(t), ũ(t)

)]
dt

dx = f(t, x, u) dt+ g(t)µ(dt), x(0) ∈ C,
u(t) ∈ U, µ ∈ M

is not less than l(x̃(0)). Thus, the process (x̃, ũ, µ̃) is
optimal in this problem for every natural n.

Then, for every n ∈ N, (x̃, zn, ũ, µ̃) is optimal in the
following problem:

Minimize l(x(0)) + +z(tn)

+

∫ tn

0

[
f0
(
t, x(t), u(t)

)
− f0

(
t, x̃(t), ũ(t)

)]
dt

dx = f(t, x, u) dt+ g(t)µ(dt), ż = 0,

(x(0), z(0)) ∈ C × R, (x(tn), z(tn)) ∈ epi J∗(·, tn)
u(t) ∈ U, µ ∈ M.

Note that the Hamilton–Pontryagin function for the new
problem coincides with the previously considered H for
every n ∈ N; now, by the Pontryagin Maximum Princi-
ple (Silva et al., 1997, Theorem 4.2), there exist ψn ∈
C(R≥0, (Rm)∗), φn ∈ R, λn ∈ {0, 1} such that

||ψn(0)||+ |φn|+ |λn| > 0

and every triple (x̃[0,tn], ψn|[0,tn], λn) satisfies the Pon-
tryagin Maximum Principle (2a)-(4) almost everywhere in
[0, tn] with the boundary conditions

(ψn(0), φn) ∈ λn∂l(x̃(0))× {0}+N(x̃(0); C),
−(ψn(tn), φn) ∈ (0, λn) +N(x̃(tn), zn(tn); epi J∗(·, tn)).

It follows from the first boundary condition that φn = 0;
moreover, the following equations hold:

λn ∈ {0, 1}, ||ψn(0)||+ |λn| > 0, (15)

ψn(0) ∈ λn∂l(x̃(0)) +N(x̃(0); C), (16)

−(ψn(tn), λn) ∈ N(x̃(tn), zn(tn); epi J∗(·, tn)) (17)

=N(x̃(tn), J∗(x̃(tn), tn); epi J∗(·, tn)).
By the definition of the limiting subdifferential, from (17)
it follows that
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either −ψn(tn) ∈ λn∂xJ∗(x̃(tn), tn), λn > 0,

or −ψn(tn) ∈ ∂∞
x J∗(x̃(tn), tn), λn = 0.

However, for a Lipschitz continuous function J∗(·, tn), we
have ∂∞

x J∗(·, tn) ≡ {0}. Then, in view of (15), we obtain

−ψn(tn) ∈ ∂xJ∗(x̃(tn), tn), λn = 1.

Further, ψn, as a solution of (2b), satisfies the Cauchy for-
mula (see (9)), and, by sequential application of (9),(18),
and (14), we obtain

−ψn(0) =−ψn(0)/λn

=−ψn(tn)A(x̃(0); tn)/λn +
∂J̃

∂x
(x̃(0); tn)

∈ ∂xJ∗(x̃(tn), tn)A(x̃(0); tn) +
∂J̃

∂x
(x̃(0); tn)

= ∂xJ∗(x̃(0), 0)−
∂J̃

∂x
(x̃(0); tn) +

∂xJ̃

∂x
(x̃(0); tn)

= ∂J∗(x̃(0), 0).

Thus, for each natural n ∈ N we obtain

−ψn(0) ∈ ∂xJ∗(x̃(0), 0).

Since J∗ is locally Lipschitz continuous in x, we have
proved the boundedness of the vectors ψn(0). Passing
from the sequence of tn to its certain subsequence if
necessary, we can assume that the sequence of ψn(0) con-
verges. Hence, by the theorem on continuous dependence
of differential equations’ solutions on initial conditions, the
sequence of ψn converges in [0,∞) to a certain solution ψ̃
of adjoint system (2b), and this convergence is uniform in
arbitrary compact time intervals. But, consequently, the
triple (x̃, ψ̃, 1) also satisfies relations (2a)–(4) on the whole

[0,∞); moreover, now, for ψ̃, condition (10) for ψ̃ is implied
by (16), and −ψn(0) ∈ ∂xJ∗(x̃(0), 0) yields

−ψ̃(0) ∈ ∂xJ∗(x̃(0), 0).

It remains to prove that (x̃, ψ̃, 1) is an exact limiting
solution of (2a)–(2b). Recall that J∗ is a limit of the

sequence of mappings ξ �→ J̃(ξ; tn) that is uniform in a
certain neighborhood of the point x̃(0). As it was showed
in (Ledyaev et al., 2012, Theorem 6.1), this means that

every element from the Fréchet subdifferential ∂̂xJ∗(z, 0)

(for all z ∈ Rm) can be rendered as a limit of ∂J̃
∂x (ξi; tn(i)) =

∂J
∂x (ξi, 0; ũ, tn(i)) for certain sequences ξi → z, n(i) →
∞. By the definition of the limiting subdifferential, ev-
ery element from ∂xJ∗(z, 0) (for all z ∈ Rm) can be
expressed—in view of a certain converging to z sequence

of ξi—as a limit of elements from ∂̂xJ∗(ξi, 0); however,
it implies that every element of ∂xJ∗(z, 0) is a limit of
∂J̃
∂x (ξi; tn(i)) =

∂J
∂x (ξi, 0; ũ, tn(i)) for certain subsequences of

ξi → z, n(i) → ∞. By −ψ̃(0) ∈ ∂xJ∗(x̃(0), 0), there exist a
sequence of ξi that converges to x̃(0) and an unboundedly
increasing sequence of natural n(i) such that −ψ∗(0) =

limi→∞
∂J
∂x (ξi, 0; tn(i)). Since the mappings Ξ � ξ �→ J̃(ξ; t)

have a common Lipschitz constant in a certain neighbor-
hood Ξ ⊂ Rm, from ||ξi − x̃(0)|| → 0, it automatically
follows that |J(ξi, 0; tn(i)) − J(x̃(0), 0; tn(i))| → 0. Thus,

the triple (x̃, ψ̃, 1) is an exact limiting solution of the

Pontryagin Maximum Principle, which is what we wanted
to prove.

6. CONCLUSION

Halkin’s scheme is a classical method for proving the Max-
imum Principle in infinite horizon control problems. But,
usually, the necessary relations obtained by this method
have no boundary condition on the adjoint variable that
would correspond to the transversality condition at in-
finity. In this paper, the appropriate condition has been
obtained as direct consequence of the well-known theorem
on convergence of subdifferentials in the case of infinite
horizon impulsive optimal control problems with bounded
gradients of the payoff function. Apparently, this way can
be applied in the general case, without any boundedness
conditions.

REFERENCES

S.M. Aseev, A.V. Kryazhimskii. The Pontryagin Max-
imum Principle and problems of optimal economic
growth. Proc. Steklov Inst. Math, 257:1–255, 2007.

S.M. Aseev, A.V. Kryazhimskii, and K. Besov. Infinite-
horizon optimal control problems in economics. Russ.
Math. Surv, 2012, 67:195–253, 2012.

S.M. Aseev, V. Veliov. Needle variations in infinite-horizon
optimal control. In: G. Wolansky, A.J. Zaslavski, edi-
tors, Variational and optimal control problems on un-
bounded domains, page 1–17. AMS, Providence, 2014.

A.O. Belyakov. Necessary conditions for infinite horizon
optimal control problems revisited. arXiv preprint
arXiv :1512.01206, 2015.

A. Blaquiere. Impulsive optimal control with finite or
infinite time horizon. J. Optim. Theory Appl, 46(4):431–
439, 1985

P. Cannarsa, H. Frankowska. Value function, relaxation,
and transversality conditions in infinite horizon optimal
control. J Math Anal Appl. 457:1188-1217, 2018.

D.A. Carlson. Uniformly overtaking and weakly overtak-
ing optimal solutions in infinite–horizon optimal control:
when optimal solutions are agreeable. J. Optim. Theory
Appl, 64(1):55–69, 1990.

V.A. Dykhta, O.N. Samsonyuk. Optimalnoe impulsnoe
upravlenie s prilozheniyami, Fizmatlit, Moscow, 2003

E.V. Goncharova, M.V. Staritsyn. Optimal impulsive
control problem with state and mixed constraints: The
case of vector-valued measure. Automation and Remote
Control, 76(3), 377–384, 2015.

H. Halkin. Necessary conditions for optimal control prob-
lems with infinite horizons. Econometrica, 42:267–272,
1974

D.V. Khlopin Necessity of vanishing shadow price in
infinite horizon control problems. J. Dyn. Con. Sys.,
19(4):519–552, 2013.

D.V. Khlopin Necessity of limiting co-state arc in
Bolza-type infinite horizon problem. Optimization,
64(11):2417–2440, 2015.

D.V. Khlopin On boundary conditions at infinity for
infinite horizon control problem // In: Constructive
Nonsmooth Analysis and Related Topics (dedicated to
the memory of V.F. Demyanov)(CNSA). pages 139-142.
VVM Publ, St. Petersburg, 2017. ,

IFAC CAO 2018
Yekaterinburg, Russia, October 15-19, 2018

217



	 Dmitry V. Khlopin  / IFAC PapersOnLine 51-32 (2018) 213–218	 217

either −ψn(tn) ∈ λn∂xJ∗(x̃(tn), tn), λn > 0,

or −ψn(tn) ∈ ∂∞
x J∗(x̃(tn), tn), λn = 0.

However, for a Lipschitz continuous function J∗(·, tn), we
have ∂∞

x J∗(·, tn) ≡ {0}. Then, in view of (15), we obtain

−ψn(tn) ∈ ∂xJ∗(x̃(tn), tn), λn = 1.

Further, ψn, as a solution of (2b), satisfies the Cauchy for-
mula (see (9)), and, by sequential application of (9),(18),
and (14), we obtain

−ψn(0) =−ψn(0)/λn

=−ψn(tn)A(x̃(0); tn)/λn +
∂J̃

∂x
(x̃(0); tn)

∈ ∂xJ∗(x̃(tn), tn)A(x̃(0); tn) +
∂J̃

∂x
(x̃(0); tn)

= ∂xJ∗(x̃(0), 0)−
∂J̃

∂x
(x̃(0); tn) +

∂xJ̃

∂x
(x̃(0); tn)

= ∂J∗(x̃(0), 0).

Thus, for each natural n ∈ N we obtain

−ψn(0) ∈ ∂xJ∗(x̃(0), 0).

Since J∗ is locally Lipschitz continuous in x, we have
proved the boundedness of the vectors ψn(0). Passing
from the sequence of tn to its certain subsequence if
necessary, we can assume that the sequence of ψn(0) con-
verges. Hence, by the theorem on continuous dependence
of differential equations’ solutions on initial conditions, the
sequence of ψn converges in [0,∞) to a certain solution ψ̃
of adjoint system (2b), and this convergence is uniform in
arbitrary compact time intervals. But, consequently, the
triple (x̃, ψ̃, 1) also satisfies relations (2a)–(4) on the whole

[0,∞); moreover, now, for ψ̃, condition (10) for ψ̃ is implied
by (16), and −ψn(0) ∈ ∂xJ∗(x̃(0), 0) yields

−ψ̃(0) ∈ ∂xJ∗(x̃(0), 0).

It remains to prove that (x̃, ψ̃, 1) is an exact limiting
solution of (2a)–(2b). Recall that J∗ is a limit of the

sequence of mappings ξ �→ J̃(ξ; tn) that is uniform in a
certain neighborhood of the point x̃(0). As it was showed
in (Ledyaev et al., 2012, Theorem 6.1), this means that
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