Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/92738
Title: Optimization of the Hausdorff distance between convex polyhedrons in R3
Authors: Ushakov, V. N.
Lebedev, P. D.
Tarasyev, A. M.
Ushakov, A. V.
Issue Date: 2015
Citation: Ushakov V. N. Optimization of the Hausdorff distance between convex polyhedrons in R3 / V. N. Ushakov, P. D. Lebedev, A. M. Tarasyev, A. V. Ushakov. — DOI 10.1016/j.ifacol.2015.11.084 // IFAC-PapersOnLine. — 2015. — Vol. 25. — Iss. 28. — P. 197-201.
Abstract: In this article, approximation of sets is under consideration using convex polyhedrons in the three dimensional Euclidean space. In the problem statement, it is necessary to find such disposition of two given polyhedrons A and B that the Hausdorff distance between them obtains the minimal value. Elements of convex analysis, non-smooth analysis, and numerical geometry are used for construction numerical algorithms solving this problem. Numerical algorithms are implemented in the software whose efficiency is demonstrated in applications. © 2015, IFAC Hosting by Elsevier Ltd.
Keywords: CHEBYSHEV CENTER
CONVEX SET
HAUSDORFF DISTANCE
HAUSDORFF METRIC
OPTIMIZATION
POLYHEDRON
SUBDIFFERENTIAL
ALGORITHMS
APPLICATION PROGRAMS
OPTIMIZATION
SET THEORY
CHEBYSHEV CENTER
CONVEX SET
HAUSDORFF DISTANCE
HAUSDORFF METRIC
POLYHEDRON
SUBDIFFERENTIALS
GEOMETRY
URI: http://elar.urfu.ru/handle/10995/92738
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84992484456
PURE ID: 699226
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2015.11.084
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2015.11.084.pdf527,25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.