Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92661
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSubhedar, A.en
dc.contributor.authorGalenko, P. K.en
dc.contributor.authorVarnik, F.en
dc.date.accessioned2020-10-20T16:36:42Z-
dc.date.available2020-10-20T16:36:42Z-
dc.date.issued2020-
dc.identifier.citationSubhedar A. Thin interface limit of the double-sided phase-field model with convection / A. Subhedar, P. K. Galenko, F. Varnik. — DOI 10.1098/rsta.2019.0540 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2020. — Vol. 2171. — Iss. 378. — 540.en
dc.identifier.issn1364503X-
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0540pdf
dc.identifier.other1good_DOI
dc.identifier.other8f01df94-a4f7-440c-9839-f735be9cac4epure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85083330897m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92661-
dc.description.abstractThe thin interface limit of the phase-field model is extended to include transport via melt convection. A double-sided model (equal diffusivity in liquid and solid phases) is considered for the present analysis. For the coupling between phase-field and Navier-Stokes equations, two commonly used schemes are investigated using a matched asymptotic analysis: (i) variable viscosity and (ii) drag force model. While for the variable viscosity model, the existence of a thin interface limit can be shown up to the second order in the expansion parameter, difficulties arise in satisfying no-slip boundary condition at this order for the drag force model. Nevertheless, detailed numerical simulations in two dimensions show practically no difference in dendritic growth profiles in the presence of forced melt flow obtained for the two coupling schemes. This suggests that both approaches can be used for the purpose of numerical simulations. Simulation results are also compared to analytic theory, showing excellent agreement for weak flow. Deviations at higher fluid velocities are discussed in terms of the underlying theoretical assumptions. © 2020 The Author(s) Published by the Royal Society. All rights reserved.en
dc.description.sponsorshipEuropean Space Agency, ESAen
dc.description.sponsorshipDeutsche Forschungsgemeinschaft, DFGen
dc.description.sponsorshipRussian Science Foundation, RSF: 16-11-10095en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft, DFGen
dc.description.sponsorshipData accessibility. This article has no additional data. Authors’ contributions. All the authors have contributed equally to this work. Competing interests. We declare we have no competing interest. Funding. P.K.G. acknowledges the support by the European Space Agency (ESA) under research project MULTIPHAS grant no. (AO-2004) and the German Aerospace Center (DLR) Space Management underen
dc.description.sponsorshipcontract no. 50WM1541 and also from the Russian Science Foundation under project no. 16-11-10095. A.S. and F.V. acknowledges financial support by the German Research Foundation (DFG) under the project no. Va205/17-1.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10095en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectASYMPTOTIC ANALYSISen
dc.subjectMELT CONVECTIONen
dc.subjectPHASE FIELDen
dc.subjectSOLIDIFICATIONen
dc.subjectASYMPTOTIC ANALYSISen
dc.subjectDRAGen
dc.subjectNUMERICAL MODELSen
dc.subjectVISCOSITYen
dc.subjectCOUPLING SCHEMEen
dc.subjectDENDRITIC GROWTHen
dc.subjectDRAG FORCE MODELen
dc.subjectFLUID VELOCITIESen
dc.subjectNO-SLIP BOUNDARY CONDITIONSen
dc.subjectPHASE FIELD MODELSen
dc.subjectTHIN-INTERFACE LIMITen
dc.subjectVARIABLE VISCOSITYen
dc.subjectNAVIER STOKES EQUATIONSen
dc.subjectARTICLEen
dc.subjectCOMPUTER SIMULATIONen
dc.subjectDENDRITEen
dc.subjectDIFFUSIVITYen
dc.subjectSOLIDen
dc.subjectTHEORETICAL STUDYen
dc.subjectTHERMODYNAMICSen
dc.subjectVELOCITYen
dc.subjectVISCOSITYen
dc.titleThin interface limit of the double-sided phase-field model with convectionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2019.0540-
dc.identifier.scopus85083330897-
local.affiliationInstitute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestr. 30, Karlsruhe, 76133, Germany
local.affiliationPhysikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germany
local.affiliationUral Federal University, Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ekaterinburg, 620000, Russian Federation
local.affiliationInterdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
local.contributor.employeeSubhedar, A., Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestr. 30, Karlsruhe, 76133, Germany
local.contributor.employeeGalenko, P.K., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität-Jena, Jena, 07743, Germany, Ural Federal University, Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeVarnik, F., Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
local.issue378-
local.volume2171-
dc.identifier.wos000526681700016-
local.identifier.pure12665461-
local.description.order540-
local.identifier.eid2-s2.0-85083330897-
local.fund.rsf16-11-10095-
local.identifier.wosWOS:000526681700016-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1098-rsta.2019.0540.pdf681,36 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.