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This article is part of the theme issue ‘Patterns in soft and biological matters’.

1. Introduction
Microstructure during solidification process forms as a complex interplay of transport processes
and thermodynamical boundary conditions. Convection, in addition to the diffusion of heat and
solute, adds new length and time scales to their transport. The course of solidification process can
be significantly altered, and defects such as macrosegregation may be formed, by the new scales
thus added. Theoretical investigations including the melt flow have been carried out previously.
For different types of flow, i.e. Oseen, Stokes or potential flow, the operating state of the dendrite
tip has been estimated [1–4]. Given the complexity of the free boundary problem, however, only
a few cases of physical interest are tractable by theoretical means alone. Numerical solution of the
coupled differential equations, in this case, offers additional insight into the problem.

In this context, phase-field models have emerged as the method of choice for the numerical
study of phase transition problems [5]. In this approach, the interface is assigned a finite thickness
and the thermodynamic boundary conditions on the liquid–solid interface are represented as a
differential equation for a phase indicator field. Equivalence of such an approach to the sharp
interface formulation, which assumes interface width W to be much smaller than all other
length scales of interest, at steady state has been shown by the method of matched asymptotic
analysis [6]. A major advancement in terms of the numerical efficiency of these models came
with the work of Karma & Rappel [7], who performed second-order asymptotic analysis of the
phase-field equations for a double-sided thermal solidification problem. They found that instead
of vanishing interface thickness W, it is sufficient to have W small compared to the diffusion
length of the solidification problem (Ld = D/V, D and V being the diffusivity of either phase and
normal velocity of the interface, respectively). The thin interface limit for thermal solidification
effectively accounts for the variation of the transport field across the interface. Extension of the
thin interface limit to other cases of practical interest, such as solutal solidification or the one-sided
model, needed an introduction of the so called anti-trapping current that removes unphysical
effects such as interface stretching and jump in the diffusive field at the interface [8]. Introduction
of the melt convection in the solidification process similarly poses additional challenges in terms
of imposing the boundary conditions in the thin interface limit.

The frameworks which combine the melt flow with the phase-field model can roughly be
classified as the variable viscosity [9,10] and the drag force model [11,12]. The variable viscosity
model assumes that, within the diffuse interface, the melt fluid viscosity continues to increase
and finally diverges while approaching the solid phase. Anderson et al. [13] analysed the
variable viscosity model in the sharp interface limit. The drag force model, on the other hand,
employs a dissipative force within the interfacial region with a tunable coupling parameter
h [12]. This parameter plays a significant role in determining the melt velocity behaviour. It is
adjusted such that the melt flow velocity matches well with the corresponding sharp interface
solution for simplified geometries. The drag force coupling has been used in numerical studies
of solidification phenomena with convection [14–16]. It is noteworthy that, despite the wide
usage, a formal equivalence of both of these couplings in the thin interface limit (second-order
asymptotics) to the sharp interface model has not been shown previously.

The present work aims at filling this gap. We provide a complete second-order asymptotic
analysis of thermally driven solidification in the presence of melt convection. To keep the analysis
tractable, anisotropies of the surface energy and kinetic coefficients are neglected. Diffusivities
and densities of the liquid and solid phases are assumed to be identical. Furthermore, growing
solid is assumed to be stationary and does not move under the forces exerted by melt flow. Special
attention is paid to ensure the no-slip boundary condition. Two of the more widely used diffuse
interface couplings mentioned above, namely variable viscosity model [10] and the drag force
model [11] are used to analyse the fluid dynamical equations together with phase-field equations.
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The two coupling schemes are compared numerically with analytical predictions in the case of
two-dimensional growth of a dendrite with a forced flow in opposite direction. Only melt flow
equations are analysed here and necessary temperature T and phase field ϕ field contributions
are derived in the appendix A.

Equations for the free boundary problem of solidification are

∂u
∂t

+ w · ∇u = D∇2u, (1.1)

− βV − δκ = u, V = D
∂u
∂n

∣∣∣∣s
l
, (1.2)

∂w
∂t

+ w · ∇w = −∇p
ρ

+ μl

ρ
∇2w + (1 − γ u)g (1.3)

and ∇ · w = 0, wI = 0, (1.4)

where u is the reduced temperature field u = (T − Tm)/L/Cp in the units of hypercooling L/Cp (L
is latent heat and Cp is heat capacity at constant pressure), T is the temperature, Tm is the melting
temperature, δ is the capillary length, β is the kinetic coefficient, w is the melt velocity, ρ is the
density, μl is the dynamic viscosity, p is the pressure, g is the acceleration due to gravity, wI is
the melt velocity at the interface (assumed to be zero). The last term on the right-hand side of
equation (1.3) is due to the Boussinesq approximation and γ is a coefficient related to thermal
expansion. The phase field and reduced temperature field equations are [17,18]

τ
∂ϕ

∂t
= W2∇2ϕ − f ′(ϕ) − A1

W
δ

ug′(ϕ) (1.5)

and
∂u
∂t

+ w · ∇u = D∇2u + 1
2

∂ϕ

∂t
, (1.6)

where f ′(ϕ) = −ϕ + ϕ3 is the derivative of the well-known double well-potential corresponding
to phase field (ϕ) with values −1, 1 in liquid and solid phases, respectively. The interpolating
function g′(ϕ) is (1 − ϕ2)2, τ is the phase-field relaxation time. For the melt flow, we analyse two
coupling schemes. The first one is an improved drag force model [11,12]

ρ

(
∂w
∂t

+ w · ∇w
)

= −∇p + μl∇2w + ρ(1 − γ u)g − h∗μl
H(ϕ)
W2 w, (1.7)

where h∗ is an optimum coupling constant and H(ϕ) is interpolating polynomial with H(±1) = 0.
The second coupling scheme is a variable viscosity model [9,10]

ρ

(
∂w
∂t

+ w · ∇w
)

= −∇p + ∇ · (μ(ϕ)∇w) + ρ(1 − γ u)g, (1.8)

where μ(ϕ) varies across the interface as harmonic mean between liquid (μl) and solid viscosity
(μs = ∞) [9,10] as follows:

μ(ϕ) = 2μl

1 − ϕ
and ϕ �= 1. (1.9)

2. Asymptotic analysis
The small parameter for the asymptotic expansion is identified as a ratio of interface width to
diffusion length, ε = WV/D. At the transient state of solidification process, time/length scales
related to advection (due to melt flow) and diffusion can play an important role [19]. In the steady
state, as in the case at hand, temperature field must be transported away from the interface at the
same rate by diffusive and advective scales. In other words, the influence of melt velocity already
appears in the interfacial velocity in the normal direction and thus, another small parameter
related to melt convection is not necessary.

A curvilinear orthogonal system of coordinates that is attached to the moving interface, with
unit vectors r̂ (normal) and ŝ (tangential) is chosen to analyse the coupled set of equations.
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Figure 1. A curvilinear orthogonal coordinate system for a smooth interface. In this system, the unit vectors r̂ and ŝ are aligned
to the directions that are perpendicular and tangential to the interface, respectively. (Online version in colour.)
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Figure 2. (a) The inner (microscopic) region corresponds to the area in the vicinity of the interface, shown here as the region of
thicknessW between the two parallel lines. The outer (macroscopic) region corresponds to the bulk domain. Physical variables,
e.g. Q, then can be expanded in the series of ε that characterizes the smallness of the diffuse interface width. (b) The matching
of the innerw and outer w̃melt velocity field. Within each order of the successive approximation in ε, the inner and outer melt
velocity should be the same while approaching the either end of the interface (η → ±∞). (Online version in colour.)

Figure 1 depicts such a coordinate system. We denote the scaled length in a direction normal to the
interface, r/ε, by η. The melt flow velocity and pressure are expanded for the inner (microscopic)
variables up to second order in ε as (figure 2),

w = w0 + εw1 + ε2w2 (2.1)

and
p = p0 + εp1 + ε2p2. (2.2)

The details of asymptotics of the reduced temperature and phase field are provided in
appendix A. In the present work, we will focus on the no-slip boundary condition. For this reason,
only the outer (macroscopic) melt velocity w̃ is expanded as, figure 2,

w̃ = w̃0 + εw̃1 + ε2w̃2. (2.3)

The macroscopic melt velocity can be Taylor expanded in the direction normal to the interface
around the sharp interface (r = 0) as follows:

w̃ = w̃0(0) + ε

(
η

∂w̃0(0)
∂r

+ w̃1(0)
)

+ ε2

(
η2

2
∂2w̃0(0)

∂r2 + η
∂w̃1(0)

∂r
+ w̃2(0)

)
. (2.4)
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The principle of matched asymptotic analysis requires that the microscopic variable when
matched with the macroscopic variable at either end of the interface results in the macroscopic
boundary conditions. For the present case, the no-slip condition at the liquid–solid interface can
be written as

w̃±
I = w̃±(0) = 0. (2.5)

The superscript + (−) denotes the quantity evaluated at the interface when approached from
the liquid (solid) side of the interface. w̃(0) reminds us that these macroscopic quantities are
evaluated at the interface, r = 0. Matching equation (2.1) with equation (2.4) now yields

w̃±
0 (0) = lim

η→±∞ w0, (2.6)

η
∂w̃±

0 (0)
∂r

+ w̃±
1 (0) = lim

η→±∞ w1 (2.7)

and
η2

2
∂2w̃±

0 (0)
∂r2 + η

∂w̃±
1 (0)
∂r

+ w̃±
2 (0) = lim

η→±∞ w2. (2.8)

We are interested in the validity of the no-slip boundary condition from the solid side of the
interface. Thus we write equations (2.6)–(2.8) as

w̃−
0 (0) = lim

η→−∞ w0, (2.9)

η
∂w̃−

0 (0)
∂r

+ w̃−
1 (0) = lim

η→−∞ w1 (2.10)

and
η2

2
∂2w̃−

0 (0)
∂r2 + η

∂w̃−
1 (0)
∂r

+ w̃−
2 (0) = lim

η→−∞ w2. (2.11)

The matched asymptotic analysis now requires that the macroscopic melt velocity should
vanish at the each order of ε, i.e. w̃−

k (0) for k ∈ (0, 2). From equations (2.9)–(2.11), we conclude
that the polynomial expansion of the inner melt velocity w in a series of η, while approaching the
solid side of the interface, should not have linear or quadratic terms. Another way to put it is

w̃−
0 (0) = ∂w̃−

0 (0)
∂r

= ∂w̃−
1 (0)
∂r

= ∂2w̃−
0 (0)

∂r2 = 0. (2.12)

In the following, we test the two couplings against the matching conditions (equations (2.9)–
(2.11)) via equation (2.9).

We denote the normal and tangential components of the melt velocity by ws and wr. Melt
fluid dynamical equations at the steady state, in the reference frame of advancing interface and
curvilinear orthogonal coordinate system, are as follows [20,21]:

ρ

(
wr

ε
∂η + ws

1 + εηκ
∂s

)
wr − ρ

ws2
κ

1 + ηεκ
= −1

ε
∂ηp + μl

(
1
ε2 ∂ηη + 1

ε
κ∂η + ∂ss

)
wr

+ ρ(1 − γ u)gr − h∗μl
H(ϕ)

L2
dε2

wr, (2.13)

ρ

(
wr

ε
∂η + ws

1 + εηκ
∂s

)
ws − ρ

wswrκ

1 + ηεκ
= − 1

1 + εηκ
∂sp + μl

(
1
ε2 ∂ηη + 1

ε
κ∂η + ∂ss

)
ws

+ ρ(1 − γ u)gs − h∗μl
H(ϕ)

L2
dε2

ws (2.14)

and 0 = 1
ε
∂ηwr + κ0wr + 1

1 + εηκ
∂sws. (2.15)

Substituting the expansion of inner variables (ϕ, u, w and p), we multiply both sides of
equations (2.13), (2.14) and (2.15) by ε2 and ε, respectively, to compare the terms in the same
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order of ε up to the second order. In the zeroth order of ε, equations (2.13), (2.14) and (2.15) yield,
respectively,

μl∂ηηwr
0 − h∗μl

H(ϕ0)

L2
d

wr
0 = 0, (2.16)

μl∂ηηws
0 − h∗μl

H(ϕ0)

L2
d

ws
0 = 0 (2.17)

and ∂ηwr
0 = 0. (2.18)

Together with the no-slip boundary condition at the solid side of the interface, limη→−∞ w0 = 0,
the solution of equations (2.16)–(2.18), valid inside the entire interface, is found as

wr
0 = ws

0 = 0. (2.19)

From equation (2.9), we see that the macroscopic no-slip boundary condition w̃−
0 (0) = 0 is

satisfied. Next, we collect the terms that are in the first order in ε of equations (2.13)–(2.15). This
procedure gives

ρwr
0∂ηwr

0 = −∂ηp0 + μl∂ηηwr
1 + κμl∂ηwr

0 − h∗μl

L2
d

[H(ϕ0)wr
1 + ϕ1H′(ϕ0)wr

0], (2.20)

ρwr
0∂ηwr

0 = μl∂ηηws
1 + κμl∂ηws

0 − h∗μl

L2
d

[H(ϕ0)ws
1 + ϕ1H′(ϕ0)ws

0] (2.21)

and ∂ηwr
1 + κ0wr

0 + ∂sws
0 = 0. (2.22)

From the continuity equation at the first order in ε, equation (2.22), and using equation (2.19),
we find that ∂ηwr

1 = 0. Application of no-slip boundary condition limη→−∞wr
1 = 0 reveals that

wr
1 identically vanishes inside the interface. Using this information in equation (2.20), we find

∂ηp0 = 0, or equivalently p0 = p̄ for an integration constant p̄.

wr
1 = ws

1 = 0. (2.23)

Thus, the linear coefficient of the inner melt velocity in the first order of ε, when expanded in a
series of η, is zero. From equation (2.10), we conclude that the no-slip boundary condition is valid
in the sharp interface limit, i.e. ∂w̃−

0 (0)/∂r = 0. Finally, we collect the terms that are in the second
order in ε of equations (2.13)–(2.15). The second order of ε corresponds to the thin interface limit,
which is the main focus of this study. At this second order

ρ(wr
0∂ηwr

1 + wr
1∂ηwr

0) − ρκ(ws
0)2 = −∂ηp1 + μl∂ηηwr

2 + μl∂sswr
0 + κμl∂ηwr

1 + ρ(1 − γ u0)gr

− h∗μl

L2
d

[
H(ϕ0)wr

2 + ϕ1H′(ϕ0)wr
1 +

(
ϕ2 + 1

2
ϕ2

1H′′(ϕ0)
)

wr
0

]
, (2.24)

ρ(wr
0∂ηws

1 + wr
1∂ηws

0) − ρκws
0wr

0 = −∂sp0 + μl∂ηηws
2 + μl∂ssws

0 + κμl∂ηws
1 + ρ(1 − γ u0)gs

− h∗μl

L2
d

[
H(ϕ0)ws

2 + ϕ1H′(ϕ0)ws
1 +

(
ϕ2 + 1

2
ϕ2

1H′′(ϕ0)
)

ws
0

]
, (2.25)

and ∂ηwr
2 + κ0wr

1 − ηκ0∂sws
1 = 0. (2.26)

From equations (2.19) and (2.23) in equation (2.26), and the no-slip boundary condition, we
conclude wr

2 = 0. Using this information in equation (2.24), in addition to equations (2.19) and
(2.23), we find −∂ηp1 = ρ(1 − γ u0)gr or p1 = −ρ(1 − γ u0)grη + p̃1 for an integration constant p̃1.
Similarly, equation (2.25) yields

0 = −∂sp0 + ρ(1 − γ u0)gs + μl∂ηηws
2 − h∗μl

L2
d

H(ϕ0)ws
2. (2.27)

Equation (2.27) reveals that the evolution equations for melt velocity field (up to second order
in ε) do not depend upon curvature or deviations of the phase field from its planar equilibrium
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shape. Consequently, the optimum coupling parameter h∗ does not have a strong dependence
upon curvature or deviations of the phase field from the equilibrium shape [12].

To apply the matching boundary condition for melt velocity, equation (2.12), we need to know
the behaviour of ws

2 near the solid side of the boundary. Noting that the polynomial H(ϕ0) in the
drag force vanishes at the either side of the interface, limη→−∞H(ϕ0) = 0, and at the zeroth order
of pressure field p0 is decoupled from the other variables, we have

lim
η→−∞ μl∂ηηws

2 = −ρ(1 − γ u0)gs. (2.28)

Integrating equation (2.28) with respect to η twice and comparing the coefficient of
η2 to (1/2)∂2w̃s−

2 /∂r2 to apply the matching condition, equation (2.11) gives, ∂2w̃s−
2 /∂r2 =

−(ρ(1 − γ u0)gs/μl). Thus, in the presence of gravity, the matching condition on the solid side
of the interface is not satisfied in the second order of ε expansion. Within the framework of
matched asymptotics, this would imply w̃−

2 (0) �= 0 indicating an apparent slip on the macroscopic
level. Numerical simulations on the other hand, enforce zero melt velocity at the solid boundary
and prevent the apparent slip at the interface. Furthermore, the optimum coupling parameter h∗
ensures a correct description of the melt velocity in the bulk liquid region. Thus, when only the
melt velocity in the bulk liquid region is of concern, the drag force should still provide accurate
description of melt velocity in the thin interface limit.

In the following, we show that the problem of satisfying the matching boundary condition
on the solid side of the interface can be resolved with the variable viscosity model. The fluid
dynamical equations for the variable viscosity model in the curvilinear orthogonal coordinates
read as follows:

ρ

(
wr

ε
∂η + ws

1 + εηκ
∂s

)
wr − ρ

ws2
κ

1 + ηεκ
= −1

ε
∂ηp +

(
1
ε2 ∂η(μ(ϕ)∂η) + μ(ϕ)κ0

1
ε
∂η

)
wr

+ ∂s(μ(ϕ)∂s)wr + ρ(1 − γ u)gr, (2.29)

ρ

(
wr

ε
∂η + ws

1 + εηκ
∂s

)
ws − ρ

wswrκ

1 + ηεκ
= −∂sp +

(
1
ε2 ∂η(μ(ϕ)∂η) + μ(ϕ)κ0

1
ε
∂η

)
ws

+ ∂s(μ(ϕ)∂s)ws + ρ(1 − γ u)gs (2.30)

and 0 = 1
ε
∂ηwr + κ0wr + 1

1 + εηκ
∂sws. (2.31)

Following a procedure similar to the drag force model, the melt velocity component in the
direction normal to the interface can be shown to be identically zero inside the interface. For the
variable viscosity model, we consider only the melt velocity component in the tangential direction
ws. For this purpose, it suffices to consider the fluid momentum balance in the tangential direction
as described in equation (2.30). Next, we investigate ws up to the second order in ε to ensure that
the matching condition for the no-slip boundary condition is indeed satisfied.

At the zeroth order in ε, equation (2.30) gives ∂η(μ(ϕ)∂η)ws
0 = 0. Assuming that the melt velocity

is decoupled from the phase field variable at the zeroth order, one has ws
0 = 0. At the next order in

ε, equation (2.30) gives ∂η(μ(ϕ)∂η)ws
1 = 0. Using expression for variable viscosity, equation (1.9),

one finds within integration constants k

ws
1(η) = w̄1(0) + k

2μl

∫ η

0
(1 − ϕ0) dx, (2.32)

where w̄1(0) is the value of ws
1 at the centre of the interface (η = 0). The indefinite integral on the

right-hand side of equation (2.32) is bounded as η → −∞. Therefore, the expansion of ws
1 in the

Taylor series of η, while approaching the solid side of the interface, does not have a term that is
linear in η. In other words, using the matching condition equation (2.10), the no-slip boundary
condition is satisfied in the sharp interface limit.
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Collecting the terms that are in the second order of ε, equation (2.30) gives

0 = ∂

∂η

(
μ(ϕ0)

∂ws
2

∂η

)
+ ∂

∂η

(
μ′(ϕ0)ϕ1

∂ws
1

∂η

)
+ μ(ϕ0)κ0

∂

∂η
ws

1 − ∂sp0 + ρ(1 − γ u0)gs. (2.33)

The variation of the zeroth order pressure p0 with respect to the tangential coordinate s is
neglected. Using the definition for μ(ϕ) equations (1.9), (2.32) and asymptotic decay of the first-
order phase-field correction ϕ1 in the limit η → −∞ (see equation (A 34)), the second term on the
right-hand side of equation (2.33) is an infinitesimal.

lim
η→−∞

[
∂

∂η

(
μ′(ϕ0)ϕ1

∂

∂η

)]
ws

1 = lim
η→−∞

∂

∂η

[(
μ′(ϕ0)ϕ1

∂ws
1

∂η

)]

= Ak lim
η→−∞

∂

∂η

[
−2μl

(1 − ϕ0)2 exp

(√
2η

Ld

)
1 − ϕ0

2μl

]

= −Ak lim
η→−∞

∂

∂η

[
1

(1 − ϕ0)
exp

(√
2η

Ld

)]

= −A
k
2

lim
η→−∞

∂

∂η

[
1 + exp

(√
2η

Ld

)]
≈ 0. (2.34)

Now, we insert equation (2.32) in equation (2.33) and integrate with respect to η to obtain

C1 =
[
μ(ϕ0)

∂

∂η

]
ws

2 + Mη, (2.35)

where C1 is an integration constant and M = ρ0gs(1 − γ u0) + kκ0 is used for brevity. The linear
and quadratic coefficients for expansion of ws

2 in the Taylor series of η can be found from
equation (2.35) as

lim
η→−∞

∂ws
2

∂η
= lim

η→−∞ [−ηM + C1]
[

1 − ϕ0(η)
2μl

]
= 0 (2.36)

and

lim
η→−∞

∂2ws
2

∂η2 = − lim
η→−∞

(
M
[

1 − ϕ0(η)
2μl

]
+ (Mη + C1)

[
1

2μl

]
∂ϕ0

∂η

)
= 0. (2.37)

Noting that 1 − ϕ0(η) vanishes exponentially, we conclude that limη→−∞η(1 − ϕ0) = 0 and
limη→−∞η(∂ϕ/∂η) = 0. equations (2.36) and (2.37) imply that ws

2 approaches a constant value
asymptotically as η → −∞, i.e. ws

2 does not have any linear or quadratic terms in η as η → −∞.
Comparing equations (2.36) and (2.37) with equation (2.11), we obtain

∂w̃s
0(0)
∂r

= 0 (2.38)

and
∂2w̃s

0(0)

∂r2 = 0. (2.39)

Thus, we see that variable viscosity model can satisfy matching condition for inner and outer
velocity fields, even in the presence of body forces like gravity.

The solid structure, undergoing phase transformation, experiences a force from the melt in
addition to external forces like gravity. This force exerted by the melt is evaluated as the surface
integral of the projection of the total stress tensor in a direction normal to the interface. The
details in which the melt velocity approaches solid side of the interface, via the stress tensor,
might become important in the evaluation of such a force. When the growing solid structure also
moves in response to the forces exerted by the melt, the two couplings considered here should be
applied carefully.
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Figure 3. Transient dendrite interface is shown with dashed lines and steady state of the dendrite interface is shown with a
solid black line. Colour scheme shows the temperature distribution while arrows show the melt velocity vectors in the steady
state. (Online version in colour.)

3. Numerical simulations
To show the equivalence of the two coupling schemes analysed above, numerical investigation
of a two-dimensional dendrite growing in the undercooled melt with external melt flow in the
opposite direction is carried out. In all of the simulations, we have set the kinetic coefficient β = 0
by using the thin interface limit relation, equation (A 53). Similar studies have been performed
previously with the drag force model [11,14,16].

Initially, a seed is placed in one of the corners of the simulation domain and temperature is set
equal to u∞ = −� everywhere. Type of boundary condition used for temperature and phase field
variables is reflective on the sides touching the dendrite and fixed (ϕ = −1, u = u∞) on the sides
far from the dendrite. To mimic the situation of the undercooling at infinity, the tip of dendrite is
maintained at a constant distance (2/3 of the length) from the boundary of the simulation domain.

Anisotropic phase field equation (with anisotropy strength ε4) reads

τ
∂ϕ

∂t
= ∇ · (W2∇ϕ) + ∇ ·

(
|∇ϕ|2W

∂W
∂∇ϕ

)
+ ϕ − ϕ3 − A1

W
δ

u(1 − ϕ2)2, (3.1)

where τ = τ0a(n)2, W = W0a(n), a(n) = 1 + ε4 cos(4θ ) and θ is the angle between normal to the
interface and some fixed direction. Lattice Boltzmann (LB) method [22] is used to solve fluid
dynamics equations. To avoid the problem due to large viscosity change inside the interface (for
the variable viscosity model), two–relaxation–time scheme [23] is chosen for LB equation. For the
drag force model, the optimum coupling constant is set to h∗ = 1.31 [12]. Flow is introduced from
top boundary with a fixed velocity and density with the help of Zou–He boundary condition [24].

Figure 3 shows a typical growth of a dendrite along with iso-temperature curves and velocity
vector arrows surrounding the dendrite. Temperature iso-lines make it clear that the temperature
reaches the undercooling at infinity at a rapid pace, and it is the velocity field that requires a large
system size for its spacial gradients to die out.

We now proceed a step further and compare results obtained from numerical simulations to an
analytic theory, which makes specific predictions on dimensionless tip velocity of the dendrite,
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Figure 4. Dimensionless growth velocity of the dendrite tip as a function of growth Péclet number Pg for (a) weak convective
transport and (b) strong convective transport. (Online version in colour.)

Ṽg = Vgδ/D, as a function of the growth Péclet number Pg = VgR/2D with R the dendrite tip
radius. To obtain different Pg, undercooling at infinity is changed keeping the incoming velocity
|w∞| of the melt constant. From the theory of selection of stable mode developed by Alexandrov
and Galenko (AG theory) [25,26], the dendrite tip velocity Ṽg can be predicted as a function
of Pg by

Ṽg = Vgδ

D
= 2σ0ε

7/4
4

1 + b
(
αRe/ε

3/4
4

)11/14 ·
P2

g[
1 + a1

√
ε4Pg (1 + χDβ/δ)

]2 , (3.2)

where a1, χ and σ0 are the numerical constants, b is the parameter related to the velocity of forced
convection, ε4 is the strength of anisotropy (which is the same as in equation (3.1)) and

αRe = a(Re)|w∞|δ
4RVg

and a(Re) =
√

Re
2π

exp (−Re/2)

erfc(
√

(Re/2)
,

with Re = |w∞|R/ν the Reynolds number, ν = μ1/ρ the kinematic viscosity and the expression
for a(Re) corresponds to the present two-dimensional case. For the present case of β = 0,
equation (3.2) is [27]

Ṽg = Vgδ

D
= 2σ0ε

7/4
4

1 + b
(
αRe/ε

3/4
4

)11/14 ·
P2

g[
1 + a1

√
ε4Pg

]2 . (3.3)

A comparison of the theory given by equation (3.3) with simulation results obtained for the
two coupling schemes (namely, variable viscosity model and the drag force model) is shown in
figure 4. Because the shape of the dendrite deviates from parabola near the dendrite tip due to
anisotropic effects [16,28,29], the dendrite radius R is obtained by a fit in a region roughly one
radius away from the tip and from the bottom (for the details of deviations of the dendrite surface
from the parabolic law behind the dendrite tip see the work [30]).

The result of comparison of the scaled velocity Ṽg as a function of Pg is shown in figure 4a
for phase-field simulations using both types of liquid–solid coupling and analytical predictions
using the AG theory and the Bouissou–Pelcé (BP theory) [2]. The corresponding set of physical
and simulation parameters used are listed in table 1. Figure 4a shows that variable viscosity and
drag force models both yield nearly the same result for all growth Péclet numbers indicating that
these two couplings can be used interchangeably for numerical purpose. Furthermore, the phase-
field simulation results are in good agreement with the BP theory for relatively low growth Péclet
numbers (Pg � 0.2), while the BP theory over-predicts the scaled tip velocity for increasing growth
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Table 1. Typical values for the set of parameters in the model (arbitrary units).

parameter symbol value dimension

diffusion coefficient D 4 length2time−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interface width W0 1 length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

relaxation time τ0 1 time
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

strength of anisotropy (stiffness) ε4 5 × 10−2 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature at infinity �(u∞) −0.55 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kinematic viscosity ν 0.16 length2time−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flow velocity at infinity w∞ −0.8 and−3.2 lengthtime−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Dimensionless parameters of the AG equation (3.3).

parameter w∞ = −0.8 w∞ = −3.2 dimension

stability constantσ0 29.89 29.89 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

constant a1 2.083 2.083 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

convective parameter b 1.31 × 10−5 5.1 × 10−3 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Péclet numbers. The AG theory, on the other hand, shows an excellent agreement with the phase-
field simulations for the complete range of growth Péclet numbers accessed in the present study.
Note that the parameter b in equation (3.3), which characterizes the strength of the convective
transport, is very small (b = 1.31 × 10−5) for the data shown in figure 4a. To observe the effect of
melt flow in simulations more clearly, the far field external velocity is increased by a factor of 4,
keeping other physical parameters the same. With a fourfold increase in the external melt velocity
the constant b now increases to 5.1 × 10−3 (table 2). Only variable viscosity model has been used
to obtain the phase-field results to save the computational effort. Comparison of the phase field
and AG theory under this condition of enhanced melt flow is shown in figure 4b. As a reference,
the analytical curve for the lower external flow velocity using the AG theory is also shown in the
same figure. Figure 4b shows that the phase-field simulations are in good agreement with the AG
theory also in the presence of strong advection effects. Note that, at higher Pg-values, analytical
predictions for these two different external melt velocities converge toward each other, which is
consistent with experiments and theoretical investigations [31].

4. Conclusion
Through the present analysis, it is shown that the thin interface limit of the phase field equations
for solidification problem remains valid even in the presence of the melt flow. Numerical
simulations confirm that the two fluid–structure coupling schemes of drag force and variable
viscosity analysed in this work, yield the same quantitative results and are in fairly good
agreement with theoretical predictions. Within the framework of the present analysis, this
suggests that the details of the coupling at the interface do not alter the macroscopic solidification
process when the no-slip boundary condition is satisfied. Further extension of the present work to
the case of unequal diffusivity and density of the liquid melt and solid phase in the thin interface
limit is an interesting topic for future studies.
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Appendix A

(a) Matched asymptotics of temperature and phase-field
More details of the matched asymptotic analysis, specifically different order contributions in the
small parameter ε expansion for temperature and phase field, are given in this section. We expand
the phase-field variables in a power series of small parameter ε up to the second order as follows:

ϕ = ϕ0 + εϕ1 + ε2ϕ2, (A 1)

u = u0 + εu1 + ε2u2, (A 2)

V = V0 + εV1 + V2ε
2, (A 3)

f ′(ϕ) = f ′(ϕ0) + εϕ1f ′′(ϕ0) + ε2
(
ϕ2f ′′(ϕ0) + 1

2 ϕ2
1 f ′′′(ϕ0)

)
, (A 4)

g′(ϕ) = g′(ϕ0) + εϕ1g′′(ϕ0) + ε2
(
ϕ2g′′(ϕ0) + 1

2 ϕ2
1g′′′(ϕ0)

)
(A 5)

and H(ϕ) = H(ϕ0) + εϕ1H′(ϕ0) + ε2
(
ϕ2H′(ϕ0) + 1

2 ϕ2
1H′′(ϕ0)

)
. (A 6)

The aim of the matched asymptotic analysis is to satisfy macroscopic boundary conditions
which can be written as follows:

ũ+
k (0) = −βVk − δκk (A 7)

and

Vk = D
∂ũ±

k
∂r

, (A 8)

where ũ stands for the macroscopic (outer) reduced temperature field. We start by writing
down the corresponding differential operators in the curvilinear orthogonal coordinate
system [21,32]

� = 1
ε2 ∂ηη + 1

ε
κ∂η + (1 − 2ηκε)∂ss + (ηε)∂s, (A 9)

∂t = ∂t − V
ε

∂η + st∂s, (A 10)

∇ · a = 1
ε
∂η(r · a) + ∂s(s · a) + κ0(a · r) (A 11)

and ∇ = 1
ε

r̂
∂

∂η
+ 1

1 + εηκ
ŝ

∂

∂s
. (A 12)

Furthermore, the curvature of the interface is given by

κ = �r = κ0 + ε
(

k1 − ηκ2
0

)
. (A 13)

Just as the microscopic ones, macroscopic variables are similarly expanded as

ũ ≈ ũ0 + εũ1 + ε2ũ2

= ũ0(0) + ε

(
η

∂ũ0(0)
∂r

+ ũ1(0)
)

+ ε2

(
η2

2
∂2ũ0(0)

∂r2 + η
∂ũ1(0)

∂r
+ ũ2(0)

)
. (A 14)
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Comparing the terms of the same orders of ε in equations (A 14) and (A 2), the matching
boundary conditions for the reduced temperature field u are

lim
η→±∞ u0 = ũ±

0 (0), (A 15)

lim
η→±∞ u1 = η

∂ũ±
0 (0)
∂r

+ ũ±
1 (0) (A 16)

and lim
η→±∞ u2 = η2

2
∂2ũ±

0 (0)

∂r2 + η
∂ũ±

1 (0)
∂r

+ ũ±
2 (0). (A 17)

In the reference frame of the interface moving with a velocity V at steady state, the reduced
temperature and phase-field equations in the curvilinear orthogonal coordinates are(

β

δ
+ ω

D
W
δ

)
ε2
(

−V
ε

∂ηϕ

)
= ε2

(
1
ε2 ∂ηη + κ0

ε
∂η + κ1∂η − ηκ2

0 ∂η

)
ϕ − 1

L2
d

[
f ′(ϕ0)

]

− 1

L2
d

[
εϕ1f ′′(ϕ0) + ε2

(
ϕ2f ′′(ϕ0) + 1

2
ϕ2

1 f ′′′(ϕ0)
)]

− 1
δLd

A1εu
[
g′(ϕ0) + εϕ1g′′(ϕ0)

]

+ 1
δLd

A1εu
[
ε2
(

ϕ2g′′(ϕ0) + 1
2
ϕ2

1g′′′(ϕ0)
)]

(A 18)

and

− Vε∂ηu + ε∂η(uwr) + ε2∂s(uws) + κ0ε
2(uwr) = D∂ηηu + Dεκ0∂ηu − Dε2κ2

0 η∂ηu − Vε

2
∂ηϕ. (A 19)

(i) The zeroth order in ε

Comparing terms in the zeroth order of ε in the steady-state equations (A 19) and (A 18), zeroth-
order contributions of the temperature and phase field can be obtained.

ϕ at the zeroth order in ε

∂ηηϕ0 = 1

L2
d

f ′(ϕ0). (A 20)

The solution of equation (A 20) can be determined from the boundary conditions limη→+∞ϕ =
−1 and limη→−∞ϕ = 1. With these boundary conditions, ϕ0 turns out to be ϕ0 = − tanh(η/

√
2Ld).

u at the zeroth order in ε

At the zeroth order of ε, equation (A 19) gives,

D∂ηηu0 = 0. (A 21)

Furthermore, at the solid side of the interface, gradient of the reduced temperature vanishes.
With this information, the solution of equation (A 21) can be written as

u0 = ū, (A 22)

where ū is a constant of integration. Thus, to the zeroth order in ε, the reduced temperature field is
constant across the interface. Matching to the outer solution, equations (A 15) and (A 22), we have

lim
η→±∞ u0 = ũ±

0 (0). (A 23)

(ii) The first order in ε

The sharp interface limit of the coupled phase-field equations corresponds to matching of inner
and outer solutions in the first order of ε. Starting with the phase-field equation, we shall look at
the deviations from the equilibrium profiles for the respective variables.
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ϕ at the first order in ε

Collecting the terms in first order of ε in equation (A 18), we have

− β

δ
V0∂ηϕ0 = ∂ηηϕ1 + κ0∂ηϕ0 − 1

L2
d

f ′′(ϕ0)ϕ1 − 1
δLd

A1u0g′(ϕ0). (A 24)

With a slight rearrangement of equation (A 24), we obtain

−
(

β

δ
V0 + κ0

)
∂ηϕ0 + 1

δLd
A1u0g′(ϕ0) =

(
∂ηη − 1

L2
d

f ′′(ϕ0)

)
ϕ1. (A 25)

The general solution of the second-order differential equation (A 25) is difficult to obtain in a
closed form. To proceed further, we note that ∂ηϕ0 is a solution of the homogeneous differential
equation (

∂ηη − 1

L2
d

f ′′(ϕ0)

)
∂ηϕ0 = 0. (A 26)

Multiplying both sides of equation (A 25) by ∂ηϕ0 and integrating over the interface with
respect to η yields

−
(

β

δ
V0 + κ0

) ∫∞

−∞

(
∂ηϕ0

)2 dη = − 1
δLd

A1u0

∫∞

−∞
g′(ϕ0)∂ηϕ0 dη, (A 27)

where we have used the information of equation (A 26). We introduce following definite integrals
for convenience:

I =
∫∞

−∞

(
∂yϕ0

)2 dy, with y = η

Ld
(A 28)

and

J =
∫ 1

−1
g′(ϕ0) dϕ0 = g(1) − g(−1) = 4

3
. (A 29)

In addition, choosing A1 = I/J, equation (A 27) can be written as

u0 = −βV0 − δ0κ0. (A 30)

To relate the inner variable u0 to the outer one ũ0, we use the matching boundary condition for
outer variable equation (A 15), to arrive at

ũ±
0 (0) = −δκ0 − βV0. (A 31)

Equation (A 31) represents the Gibbs–Thomson boundary condition in the sharp interface
limit. For later purpose, we need the behaviour of ϕ1 near the solid side of the interface to
determine the relative smallness of the terms in the velocity field asymptotics. To find out the
form of ϕ1, we take the limit η → −∞ in equation (A 25), and obtain

lim
η→−∞

[
−
(

β

δ
V0 + κ0

)
∂ηϕ0 + 1

δLd
a1u0g′(ϕ0)

]
= lim

η→−∞

(
∂ηη − 1

L2
d

f ′′(ϕ0)

)
ϕ1 (A 32)

with ϕ0 = − tanh(η/
√

2Ld) and g′(ϕ0) = (1 − ϕ2
0)2, the left-hand side of equation (A 32) is zero.

Noting that f ′′(ϕ0) = −(1 − 3ϕ2
0), the left-hand side of the equation is simplified as follows:

0 = lim
η→−∞

(
∂ηη − 2

L2
d

)
ϕ1. (A 33)

The general solution of equation (A 33), that satisfies the boundary condition limη→−∞ ϕ1 = 0,
is

lim
η→−∞ ϕ1 = A exp

(√
2η

Ld

)
. (A 34)
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u at the first order in ε

At the first order in ε, we seek to obtain macroscopic heat balance condition from the
consideration of the reduced temperature field in the sharp interface limit. Equating the terms
of the first order in ε in equation (A 19) gives

− V0∂ηu0 + ∂η(wr
0u0) = D∂ηηu1 − V0

2
∂ηϕ0. (A 35)

Given that u0 and wr
0 are constant inside the interface, their spatial derivative with respect to

η vanishes. Integration of equation (A 35) with respect to η yields

D∂ηu1 = A + V0

2
ϕ0, (A 36)

where A is an integration constant. Integrating the above expression once more, we have

u1 = ū + A
D

η + V0

2D

∫ η

0
ϕ0(x) dx, (A 37)

where ū is the value of u1 at the centre of the interface η = 0. In order to use the matching boundary
condition for the reduced temperature field, the behaviour of equation (A 37) near the either ends
of the interface needs to be known. Taking the limit η → ±∞ of equation (A 37) yields

lim
η→∞ u1 = ū +

(
A
D

− V0

2D

)
η + V0

2D

∫ η

0
(1 + ϕ0(x)) dx (A 38)

and

lim
η→−∞ u1 = ū +

(
A
D

+ V0

2D

)
η + V0

2D

∫ η

0
(−1 + ϕ0(x)) dx. (A 39)

Using the boundary condition for matching equation (A 16), and comparing coefficients of η

in equations (A 39) and (A 38), we have

∂ũ+
0 (0)
∂r

= A
D

− V0

2D
(A 40)

and

∂ũ−
0 (0)
∂r

= A
D

+ V0

2D
. (A 41)

The macroscopic heat balance condition is obtained by subtracting the above two equations.
This yields

V0 = D

(
∂ũ−

0 (0)
∂r

− ∂ũ+
0 (0)
∂r

)
. (A 42)

Thus, we conclude that the advection transport term ∇ · (uw) does not violate the heat
conservation equation in the sharp interface limit.

(iii)ϕ at the second order in ε

The second order of ε corresponds to the thin interface limit of the coupled phase-field equations.
Collecting the terms in the second order of ε in the expansion equation for the phase-field
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equation (A 18), we obtain

− β

δ
(V0∂ηϕ1 + V1∂ηϕ0) − ω

D
V0∂ηϕ0 = ∂ηηϕ2 + κ0∂ηϕ1 + κ1∂ηϕ0 − ηκ2

0 ∂ηϕ0

− 1

L2
d

ϕ2f ′′(ϕ0) − ϕ2
1

2L2
d

f ′′′(ϕ0) − 1
δLd

A1
(
u0ϕ1g′′(ϕ0) + u1g′(ϕ0)

)
. (A 43)

A slight rearrangement of the terms in equation (A 43) gives(
∂ηη − 1

L2
d

f ′′(ϕ0)

)
ϕ2 = −

(
β

δ
V0 + κ0

)
∂ηϕ1 −

(
β

δ
V1 + κ1

)
∂ηϕ0 + ηκ2

0 ∂ηϕ0

− ω

D
V0∂ηϕ0 + ϕ2

1

2L2
d

f ′′′(ϕ0) + 1
δLd

A1u0ϕ1g′′(ϕ) + 1
δLd

A1u1g′(ϕ0). (A 44)

Similar to the case of ϕ1, a closed form solution of equation (A 44) is difficult to obtain. To
proceed further, we use the solvability condition [7] to yield

0 =
∫∞

−∞

[(
∂ηη − 1

L2
d

f ′′(ϕ0)

)
ϕ2

]
∂ηϕ0 dη

= −
(

β

δ
V0 + κ0

) ∫∞

−∞
∂ηϕ1∂ηϕ0 dη −

(
β

δ
V1 + κ1

) ∫∞

−∞
(∂ηϕ0)2 dη

+ κ2
0

∫∞

−∞
η(∂ηϕ0)2 dη +

∫∞

−∞
ϕ2

1

2L2
d

f ′′′(ϕ0)(∂ηϕ0) dη

+ 1
δLd

A1

∫∞

−∞
u0ϕ1g′′(ϕ)(∂ηϕ0) dη + 1

δLd
A1

∫∞

−∞
u1g′(ϕ0)(∂ηϕ0) dη. (A 45)

The equilibrium phase-field profile ϕ0 is an odd function of η implying that ∂ηϕ0 is an even
function of η. Moreover, we note from equation (A 25), that ϕ1 is an even function, which makes
∂ηϕ1 an odd function. Similarly, f ′′′(ϕ) and g′′(ϕ) are odd functions, given that f (ϕ) is a double well-
potential function and g′(ϕ) = (1 − ϕ2)2. Hence, the first and third integrands are odd function of
η. This, in turn, implies

∫∞

−∞
∂ηϕ1∂ηϕ0 dη =

∫∞

−∞
η(∂ηϕ0)2 dη = 0

and
∫∞

−∞
ϕ2

1 f ′′′(ϕ0)(∂ηϕ0) dη =
∫∞

−∞
u0ϕ1g′′(ϕ)∂ηϕ0 dη = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 46)

Using equations (A 28), (A 29) and (A 46), (A 45) are simplified to

0 = −
(

β

δ
V1 + κ1

)
I

Ld
+ 1

δLd
A1

∫∞

−∞
u1g′(ϕ0)∂ηϕ0 dη − ω

D
V0

I
Ld

. (A 47)

Substituting in equation (A 47), the expression for u1 with the help of equation (A 37),
we obtain

0 = −
(

β

δ
V1 + κ1

)
I

Ld
+ 1

δLd
A1ū

∫∞

−∞
g′(ϕ0)∂ηϕ0 dη

+ 1
δ2

∫∞

−∞

(
V0

2D

∫ η

0
ϕ0(x)dx

)
g′(ϕ0)∂ηϕ0 dη. (A 48)

For further simplification, we note from equations (A 16) to (A 37),

ũ±
1 (0) = ū + V0

2D

∫∞

0
(1 + ϕ0(x)) dx. (A 49)

Also let

F =
∫∞

0
(1 + ϕ0(x)) dx (A 50)
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and

K =
∫∞

−∞

(∫ η

0
ϕ0(x)dx

)
g′(ϕ0)(∂ηϕ0) dη,

= −
∫∞

−∞
g(ϕ0)ϕ0 dη. (A 51)

Using the value of ū from equation (A 49), and identifying definite integrals equations (A 51)
and (A 50) in equation (A 48), we arrive at

J
A1

δLd
u±

1 (0) = (βV1 + κ1δ)
I

δLd
+ A1

δ2
V0δ

2D
FJ + V0

δLd

δ

2D
K − ω

V0δ

D
I

δLd
. (A 52)

Using the fact that A1 = I/J, we obtain

u±
1 (0) = −(βV1 + κ1δ) + V0δ

2D
F + V0δ

2D
K
I

− ω
V0δ

D
= −(βV1 + κ1δ) + V0δ

2D

(
F + K

I
− 2ω

)
.

Equation (A 53) is one of the central results of the present asymptotic expansion analysis, as it
gives the relation between the macroscopic undercooling (recall that up to the first order in ε

approximation, u±(0) = u±
0 (0) + εu±

1 (0)) and the physical parameters of the model. This relation
is, however, different from the standard Gibbs–Thomson equation unless the second bracket on
the right-hand side of equation (A 53) vanishes. Choosing ω = 1

2 (F + K/I), we ensure that Gibbs–
Thomson condition also holds at ε1 order.

In terms of the phase-field parameters, the relation is

β = τδ

W2 − ωW
D

. (A 53)

Interestingly, equation (A 53) which is the thin interface limit relation in the presence of melt
flow turns out to be identical to the one derived for the diffusion limited solidification problem
by Karma & Rappel [7].

u at the second order in ε

At the second order in ε, we seek to obtain the heat conservation condition in the thin interface
limit. Equating the terms of ε2 in equation (A 19), one arrives at

− V0∂ηu1 + V1∂ηu0 + ∂η(u1wr
0 + u0wr

1) + κ0wr
0 + ∂s(u0ws

0)

= D∂η∂ηu2 − V0

2
∂ηϕ1 + D[κ0∂ηu1 + κ1∂ηu0] − V1

2
∂ηϕ0. (A 54)

We know that the melt velocity in a direction normal to the interface wr is identically equal
to zero at the zeroth and first order of ε, i.e. wr

0 = wr
1 = 0 inside the interface. In addition, the

tangential melt velocity ws
0 in the first order of ε is also equal to zero due to the no-slip boundary

condition. Finally, noting that u0 is constant inside the interface and integrating equation (A 54)
with respect to η, we obtain

E − V0u1 = D∂ηu2 + Dκ0u1 − V0

2
ϕ1 − V1

2
ϕ0, (A 55)

where E is a constant of integration. With a slight rearrangement, equation (A 55) can be written as

D∂ηu2 = E − (Dκ0 + V0)u1 + V0

2
ϕ1 + V1

2
ϕ0. (A 56)

Integrating equation (A 56) with respect to η, we have

Du2 = Du2(0) + Eη − (Dκ0 + V0)
∫ η

0
u1 dx + V0

2

∫ η

0
ϕ1 dx + V1

2

∫ η

0
ϕ0 dx, (A 57)
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where u2(0) is the value of u2 at the centre of the interface (η = 0). Using the expression for u1,
equation (A 37), we have

Du2 = Du2(0) + Eη + V0

2

∫ η

0
ϕ1 dx + V1

2

∫ η

0
ϕ0 dx

− (Dκ0 + V0)
∫ η

0

(
ū + V0

2D

∫ x

0
(ϕ0(z) − 1) dz

)
dx. (A 58)

We write equation (A 58) close to the either end of the interface (η → ±∞) separately in order
to apply matching conditions

lim
η→+∞ Du2 = −(Dκ0 + V0)

∫ η

0

(
ū − V0

2D
x − V0

2D
x + V0

2D

∫ x

0
(ϕ0 + 1)dy

)
dx

+ u2(0) + Eη + V0

2

∫ η

0
ϕ1 dx + V1

2

∫ η

0
ϕ0 dx

= u2(0) + V1

2

∫ η

0
(ϕ0 + 1) dx + V0

2

∫ η

0
ϕ1 dx + (Dκ0 + V0)

(
V0η

2

2D

)

+
[

E − (Dκ0 + V0)
(

ū + V0

2D

∫+∞

0
(ϕ0 + 1)dy

)
− V1

2

]
η (A 59)

and

lim
η→−∞ Du2 = −(Dκ0 + V0)

∫ η

0

(
ū − V0

2D
x + V0

2D
x + V0

2D

∫ x

0
(ϕ0 − 1)dy

)
dx

+ u2(0) + Eη + V0

2

∫ η

0
ϕ1 dx + V1

2

∫ η

0
ϕ0 dx

= u2(0) + V1

2

∫ η

0
(ϕ0 − 1) dx + V0

2

∫ η

0
ϕ1 dx+

+
[

E − (Dκ0 + V0)
(

ū + V0

2D

∫+∞

0
(ϕ0 − 1)dy

)
+ V1

2

]
η. (A 60)

Recalling matching condition for u2, equation (A 17), and comparing equations (A 60) and
(A 59), one arrives at

lim
η→±∞ ũ±

2 (0) = u2(0) + V1

2

∫ η

0
(ϕ0 ± 1) dx + V0

2

∫ η

0
ϕ1 dx. (A 61)

Comparing coefficients of η in equations (A 17), (A 60) and (A 59), we have

∂ũ+
1 (0)
∂r

= E
D

−
(

κ0 + V0

D

)(
ū + V0

2D

∫∞

0
(1 + ϕ0) dx

)
− V1

2D
(A 62)

and
∂ũ−

1 (0)
∂r

= E
D

−
(

κ0 + V0

D

)(
ū + V0

2D

∫∞

0
(1 + ϕ0) dx

)
+ V1

2D
. (A 63)

Finally, to arrive at the macroscopic heat balance condition, we subtract equation (A 63) from
equation (A 62) to obtain

V1 = D

(
∂ũ−

1 (0)
∂r

− ∂ũ+
1 (0)
∂r

)
. (A 64)

This ensures that, heat conservation condition is also satisfied in the second order of ε.
Moreover, comparing coefficients of η2 in equations (A 17), (A 60) and (A 59), we have

∂2ũ0
+

∂r2 =
(

κ0 + V0

D

)
V0η

2

2D
(A 65)

and
∂2ũ0

−

∂r2 = 0. (A 66)
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Thus, we see that the macroscopic Gibbs–Thomson and energy conservation boundary
conditions are valid in the presence of melt flow.
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