Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/92654
Название: | Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay |
Авторы: | Hendy, A. S. Pimenov, V. G. Macías-Díaz, J. E. |
Дата публикации: | 2020 |
Издатель: | John Wiley and Sons Inc. |
Библиографическое описание: | Hendy A. S. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay / A. S. Hendy, V. G. Pimenov, J. E. Macías-Díaz. — DOI 10.1002/num.22421 // Numerical Methods for Partial Differential Equations. — 2020. — Vol. 1. — Iss. 36. — P. 118-132. |
Аннотация: | A class of one-dimensional time-fractional parabolic differential equations with delay effects of functional type in the time component is numerically investigated in this work. To that end, a compact difference scheme is constructed for the numerical solution of those equations based on the idea of separating the current state and the prehistory function. In these terms, the prehistory function is approximated by means of an appropriate interpolation–extrapolation operator. A discrete form of the fractional Gronwall inequality is employed to provide an optimal error estimate. The existence and uniqueness of the numerical solutions, the order of approximation error for the constructed scheme, the stability and the order of convergence are mathematically investigated in this work. © 2019 Wiley Periodicals, Inc. |
Ключевые слова: | COMPACT DIFFERENCE METHOD CONVERGENCE AND STABILITY DISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITY FRACTIONAL PARABOLIC DIFFERENTIAL EQUATIONS FUNCTIONAL DELAY NUMERICAL ANALYSIS NUMERICAL METHODS COMPACT DIFFERENCE METHOD CONVERGENCE AND STABILITY DISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITY FUNCTIONAL DELAYS PARABOLIC DIFFERENTIAL EQUATION DIFFERENTIAL EQUATIONS |
URI: | http://elar.urfu.ru/handle/10995/92654 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85070294272 |
Идентификатор WOS: | 000481053900001 |
Идентификатор PURE: | 11326630 |
ISSN: | 0749159X |
DOI: | 10.1002/num.22421 |
Сведения о поддержке: | Russian Foundation for Basic Research, RFBR: 19‐01‐00019 A1‐S‐45928 The authors want to thank the associate editor in charge of handling this manuscript and anonymous reviewers for all their comments and criticisms. Their suggestions contributed decisively to improve the overall quality of this work. The first two authors wish to acknowledge the support of RFBR Grant 19‐01‐00019. Meanwhile, the last author wishes to acknowledge the financial support of the National Council for Science and Technology of Mexico through grant A1‐S‐45928. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1002-num.22421.pdf | 427,38 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.