Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92654
Название: Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay
Авторы: Hendy, A. S.
Pimenov, V. G.
Macías-Díaz, J. E.
Дата публикации: 2020
Издатель: John Wiley and Sons Inc.
Библиографическое описание: Hendy A. S. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay / A. S. Hendy, V. G. Pimenov, J. E. Macías-Díaz. — DOI 10.1002/num.22421 // Numerical Methods for Partial Differential Equations. — 2020. — Vol. 1. — Iss. 36. — P. 118-132.
Аннотация: A class of one-dimensional time-fractional parabolic differential equations with delay effects of functional type in the time component is numerically investigated in this work. To that end, a compact difference scheme is constructed for the numerical solution of those equations based on the idea of separating the current state and the prehistory function. In these terms, the prehistory function is approximated by means of an appropriate interpolation–extrapolation operator. A discrete form of the fractional Gronwall inequality is employed to provide an optimal error estimate. The existence and uniqueness of the numerical solutions, the order of approximation error for the constructed scheme, the stability and the order of convergence are mathematically investigated in this work. © 2019 Wiley Periodicals, Inc.
Ключевые слова: COMPACT DIFFERENCE METHOD
CONVERGENCE AND STABILITY
DISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITY
FRACTIONAL PARABOLIC DIFFERENTIAL EQUATIONS
FUNCTIONAL DELAY
NUMERICAL ANALYSIS
NUMERICAL METHODS
COMPACT DIFFERENCE METHOD
CONVERGENCE AND STABILITY
DISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITY
FUNCTIONAL DELAYS
PARABOLIC DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONS
URI: http://elar.urfu.ru/handle/10995/92654
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85070294272
Идентификатор WOS: 000481053900001
Идентификатор PURE: 11326630
ISSN: 0749159X
DOI: 10.1002/num.22421
Сведения о поддержке: Russian Foundation for Basic Research, RFBR: 19‐01‐00019
A1‐S‐45928
The authors want to thank the associate editor in charge of handling this manuscript and anonymous reviewers for all their comments and criticisms. Their suggestions contributed decisively to improve the overall quality of this work. The first two authors wish to acknowledge the support of RFBR Grant 19‐01‐00019. Meanwhile, the last author wishes to acknowledge the financial support of the National Council for Science and Technology of Mexico through grant A1‐S‐45928.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1002-num.22421.pdf427,38 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.