Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHendy, A. S.en
dc.contributor.authorPimenov, V. G.en
dc.contributor.authorMacías-Díaz, J. E.en
dc.date.accessioned2020-10-20T16:36:40Z-
dc.date.available2020-10-20T16:36:40Z-
dc.date.issued2020-
dc.identifier.citationHendy A. S. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay / A. S. Hendy, V. G. Pimenov, J. E. Macías-Díaz. — DOI 10.1002/num.22421 // Numerical Methods for Partial Differential Equations. — 2020. — Vol. 1. — Iss. 36. — P. 118-132.en
dc.identifier.issn0749159X-
dc.identifier.other1good_DOI
dc.identifier.other981e6f87-0764-4608-b168-da9f89679e1fpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85070294272m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92654-
dc.description.abstractA class of one-dimensional time-fractional parabolic differential equations with delay effects of functional type in the time component is numerically investigated in this work. To that end, a compact difference scheme is constructed for the numerical solution of those equations based on the idea of separating the current state and the prehistory function. In these terms, the prehistory function is approximated by means of an appropriate interpolation–extrapolation operator. A discrete form of the fractional Gronwall inequality is employed to provide an optimal error estimate. The existence and uniqueness of the numerical solutions, the order of approximation error for the constructed scheme, the stability and the order of convergence are mathematically investigated in this work. © 2019 Wiley Periodicals, Inc.en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 19‐01‐00019en
dc.description.sponsorshipA1‐S‐45928en
dc.description.sponsorshipThe authors want to thank the associate editor in charge of handling this manuscript and anonymous reviewers for all their comments and criticisms. Their suggestions contributed decisively to improve the overall quality of this work. The first two authors wish to acknowledge the support of RFBR Grant 19‐01‐00019. Meanwhile, the last author wishes to acknowledge the financial support of the National Council for Science and Technology of Mexico through grant A1‐S‐45928.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceNumerical Methods for Partial Differential Equationsen
dc.subjectCOMPACT DIFFERENCE METHODen
dc.subjectCONVERGENCE AND STABILITYen
dc.subjectDISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITYen
dc.subjectFRACTIONAL PARABOLIC DIFFERENTIAL EQUATIONSen
dc.subjectFUNCTIONAL DELAYen
dc.subjectNUMERICAL ANALYSISen
dc.subjectNUMERICAL METHODSen
dc.subjectCOMPACT DIFFERENCE METHODen
dc.subjectCONVERGENCE AND STABILITYen
dc.subjectDISCRETE FRACTIONAL GRONWALL-TYPE INEQUALITYen
dc.subjectFUNCTIONAL DELAYSen
dc.subjectPARABOLIC DIFFERENTIAL EQUATIONen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.titleConvergence and stability estimates in difference setting for time-fractional parabolic equations with functional delayen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1002/num.22421-
dc.identifier.scopus85070294272-
local.affiliationDepartment of Mathematics, Faculty of Science, Benha University, Benha, Egypt
local.affiliationDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
local.affiliationUral Branch of the Russian Academy of Sciences, Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.affiliationDepartamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
local.contributor.employeeHendy, A.S., Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt, Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeePimenov, V.G., Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt, Ural Branch of the Russian Academy of Sciences, Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.contributor.employeeMacías-Díaz, J.E., Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
local.description.firstpage118-
local.description.lastpage132-
local.issue36-
local.volume1-
dc.identifier.wos000481053900001-
local.identifier.pure11326630-
local.identifier.eid2-s2.0-85070294272-
local.fund.rffi19‐01‐00019-
local.identifier.wosWOS:000481053900001-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1002-num.22421.pdf427,38 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.