Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92443
Title: Layer methods for stochastic Navier-Stokes equations using simplest characteristics
Authors: Milstein, G. N.
Tretyakov, M. V.
Issue Date: 2016
Publisher: Elsevier
Citation: Milstein G. N. Layer methods for stochastic Navier-Stokes equations using simplest characteristics / G. N. Milstein, M. V. Tretyakov. — DOI 10.1016/j.cam.2016.01.051 // Journal of Computational and Applied Mathematics. — 2016. — Iss. 302. — P. 1-23.
Abstract: We propose and study a layer method for stochastic Navier-Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented. © 2016 Elsevier B.V. All rights reserved.
Keywords: 60H15
60H35
MSC 65C30
ADDITIVE NOISE
BOUNDARY CONDITIONS
CONDENSERS (LIQUEFIERS)
DIFFERENTIAL EQUATIONS
NUMERICAL METHODS
STOCHASTIC SYSTEMS
VISCOUS FLOW
60H15
60H35
MSC 65C30
NUMERICAL EXPERIMENTS
NUMERICAL INTEGRATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
PERIODIC BOUNDARY CONDITIONS
PROBABILISTIC REPRESENTATION
STOCHASTIC NAVIER-STOKES EQUATIONS
NAVIER STOKES EQUATIONS
URI: http://elar.urfu.ru/handle/10995/92443
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84959359505
WOS ID: 000374601100001
PURE ID: 699260
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.01.051
Sponsorship: Ministry of Education and Science of the Russian Federation: 2725
JP091142
GNM and MVT were partially supported by the Royal Society International Joint Project grant JP091142 . GNM was partially supported by the Ministry of Education and Science of Russian Federation Project 2725.
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.cam.2016.01.051.pdf495,64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.