Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/92284
Название: | Feature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signals |
Авторы: | Syskov, A. Borisov, V. Tetervak, V. Kublanov, V. |
Дата публикации: | 2018 |
Издатель: | SciTePress |
Библиографическое описание: | Syskov A. Feature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signals / A. Syskov, V. Borisov, V. Tetervak, V. Kublanov. — DOI 10.5220/0006593001640172 // BIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018. — 2018. — Iss. 1. — P. 164-172. |
Аннотация: | In the paper the results of extracting and selection the features of EEG data and accelerometer for mental status evaluation are shown. We have used 14 channel wireless EEG-system Emotiv EPOC+ with accelerometer (motional data - MD) for short-term recording under several functional states for 10 healthy subjects: Functional rest (rest state), TOVA-test (mental load), Hyperventilation (physical load) and Aftereffect (after test state). We then extracted core features from EEG-only and MD-only data using principal component analysis. After that, supervised learning methods were used for mental state classification: EEG-only core features for AF3, T7, O1, T8, AF4 channels, MD-only core features and EEG- MD integrated core features. Experimental results showed that integrated core features for mental status evaluation have higher prediction accuracy 92,0% for decision tree method. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved |
Ключевые слова: | ACCELEROMETER BRAIN-COMPUTER INTERFACE ELECTROENCEPHALOGRAPHY MACHINE LEARNING MENTAL EVALUATION PRINCIPAL COMPONENT ANALYSIS TEST OF VARIABLES OF ATTENTION ACCELEROMETERS BIOMEDICAL ENGINEERING BIOMEDICAL SIGNAL PROCESSING DATA MINING DECISION TREES ELECTRONIC MEDICAL EQUIPMENT LEARNING SYSTEMS PRINCIPAL COMPONENT ANALYSIS DECISION TREE METHOD FEATURE EXTRACTION AND SELECTION FUNCTIONAL STATE HEALTHY SUBJECTS INTEGRATED CORE PREDICTION ACCURACY STATUS EVALUATIONS SUPERVISED LEARNING METHODS FEATURE EXTRACTION |
URI: | http://elar.urfu.ru/handle/10995/92284 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85051724034 |
Идентификатор PURE: | 7768992 |
ISBN: | 9789897582776 |
DOI: | 10.5220/0006593001640172 |
Сведения о поддержке: | The work was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.5220-0006593001640172.pdf | 1,18 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.