Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/92284
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Syskov, A. | en |
dc.contributor.author | Borisov, V. | en |
dc.contributor.author | Tetervak, V. | en |
dc.contributor.author | Kublanov, V. | en |
dc.date.accessioned | 2020-10-20T16:35:09Z | - |
dc.date.available | 2020-10-20T16:35:09Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Syskov A. Feature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signals / A. Syskov, V. Borisov, V. Tetervak, V. Kublanov. — DOI 10.5220/0006593001640172 // BIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018. — 2018. — Iss. 1. — P. 164-172. | en |
dc.identifier.isbn | 9789897582776 | - |
dc.identifier.other | https://doi.org/10.5220/0006593001640172 | |
dc.identifier.other | 2-3 | good_DOI |
dc.identifier.other | 6ff7fdaf-6813-4ea8-b0b1-f625c2d176d0 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85051724034 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/92284 | - |
dc.description.abstract | In the paper the results of extracting and selection the features of EEG data and accelerometer for mental status evaluation are shown. We have used 14 channel wireless EEG-system Emotiv EPOC+ with accelerometer (motional data - MD) for short-term recording under several functional states for 10 healthy subjects: Functional rest (rest state), TOVA-test (mental load), Hyperventilation (physical load) and Aftereffect (after test state). We then extracted core features from EEG-only and MD-only data using principal component analysis. After that, supervised learning methods were used for mental state classification: EEG-only core features for AF3, T7, O1, T8, AF4 channels, MD-only core features and EEG- MD integrated core features. Experimental results showed that integrated core features for mental status evaluation have higher prediction accuracy 92,0% for decision tree method. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved | en |
dc.description.sponsorship | The work was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | SciTePress | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | BIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018 | en |
dc.subject | ACCELEROMETER | en |
dc.subject | BRAIN-COMPUTER INTERFACE | en |
dc.subject | ELECTROENCEPHALOGRAPHY | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | MENTAL EVALUATION | en |
dc.subject | PRINCIPAL COMPONENT ANALYSIS | en |
dc.subject | TEST OF VARIABLES OF ATTENTION | en |
dc.subject | ACCELEROMETERS | en |
dc.subject | BIOMEDICAL ENGINEERING | en |
dc.subject | BIOMEDICAL SIGNAL PROCESSING | en |
dc.subject | DATA MINING | en |
dc.subject | DECISION TREES | en |
dc.subject | ELECTRONIC MEDICAL EQUIPMENT | en |
dc.subject | LEARNING SYSTEMS | en |
dc.subject | PRINCIPAL COMPONENT ANALYSIS | en |
dc.subject | DECISION TREE METHOD | en |
dc.subject | FEATURE EXTRACTION AND SELECTION | en |
dc.subject | FUNCTIONAL STATE | en |
dc.subject | HEALTHY SUBJECTS | en |
dc.subject | INTEGRATED CORE | en |
dc.subject | PREDICTION ACCURACY | en |
dc.subject | STATUS EVALUATIONS | en |
dc.subject | SUPERVISED LEARNING METHODS | en |
dc.subject | FEATURE EXTRACTION | en |
dc.title | Feature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signals | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.5220/0006593001640172 | - |
dc.identifier.scopus | 85051724034 | - |
local.affiliation | Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Syskov, A., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Borisov, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Tetervak, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Kublanov, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 164 | - |
local.description.lastpage | 172 | - |
local.issue | 1 | - |
local.identifier.pure | 7768992 | - |
local.identifier.eid | 2-s2.0-85051724034 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.5220-0006593001640172.pdf | 1,18 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.