Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92284
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSyskov, A.en
dc.contributor.authorBorisov, V.en
dc.contributor.authorTetervak, V.en
dc.contributor.authorKublanov, V.en
dc.date.accessioned2020-10-20T16:35:09Z-
dc.date.available2020-10-20T16:35:09Z-
dc.date.issued2018-
dc.identifier.citationSyskov A. Feature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signals / A. Syskov, V. Borisov, V. Tetervak, V. Kublanov. — DOI 10.5220/0006593001640172 // BIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018. — 2018. — Iss. 1. — P. 164-172.en
dc.identifier.isbn9789897582776-
dc.identifier.otherhttps://doi.org/10.5220/0006593001640172pdf
dc.identifier.other2-3good_DOI
dc.identifier.other6ff7fdaf-6813-4ea8-b0b1-f625c2d176d0pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85051724034m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92284-
dc.description.abstractIn the paper the results of extracting and selection the features of EEG data and accelerometer for mental status evaluation are shown. We have used 14 channel wireless EEG-system Emotiv EPOC+ with accelerometer (motional data - MD) for short-term recording under several functional states for 10 healthy subjects: Functional rest (rest state), TOVA-test (mental load), Hyperventilation (physical load) and Aftereffect (after test state). We then extracted core features from EEG-only and MD-only data using principal component analysis. After that, supervised learning methods were used for mental state classification: EEG-only core features for AF3, T7, O1, T8, AF4 channels, MD-only core features and EEG- MD integrated core features. Experimental results showed that integrated core features for mental status evaluation have higher prediction accuracy 92,0% for decision tree method. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserveden
dc.description.sponsorshipThe work was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSciTePressen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceBIODEVICES 2018 - 11th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018en
dc.subjectACCELEROMETERen
dc.subjectBRAIN-COMPUTER INTERFACEen
dc.subjectELECTROENCEPHALOGRAPHYen
dc.subjectMACHINE LEARNINGen
dc.subjectMENTAL EVALUATIONen
dc.subjectPRINCIPAL COMPONENT ANALYSISen
dc.subjectTEST OF VARIABLES OF ATTENTIONen
dc.subjectACCELEROMETERSen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectBIOMEDICAL SIGNAL PROCESSINGen
dc.subjectDATA MININGen
dc.subjectDECISION TREESen
dc.subjectELECTRONIC MEDICAL EQUIPMENTen
dc.subjectLEARNING SYSTEMSen
dc.subjectPRINCIPAL COMPONENT ANALYSISen
dc.subjectDECISION TREE METHODen
dc.subjectFEATURE EXTRACTION AND SELECTIONen
dc.subjectFUNCTIONAL STATEen
dc.subjectHEALTHY SUBJECTSen
dc.subjectINTEGRATED COREen
dc.subjectPREDICTION ACCURACYen
dc.subjectSTATUS EVALUATIONSen
dc.subjectSUPERVISED LEARNING METHODSen
dc.subjectFEATURE EXTRACTIONen
dc.titleFeature extraction and selection for EEG and motion data in tasks of the mental status assessing pilot study using emotiv EPOC+ headset signalsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.5220/0006593001640172-
dc.identifier.scopus85051724034-
local.affiliationUral Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation
local.contributor.employeeSyskov, A., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation
local.contributor.employeeBorisov, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation
local.contributor.employeeTetervak, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation
local.contributor.employeeKublanov, V., Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation
local.description.firstpage164-
local.description.lastpage172-
local.issue1-
local.identifier.pure7768992-
local.identifier.eid2-s2.0-85051724034-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.5220-0006593001640172.pdf1,18 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.