Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/92263
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Khachay, M. | en |
dc.contributor.author | Ogorodnikov, Y. | en |
dc.date.accessioned | 2020-10-20T16:35:04Z | - |
dc.date.available | 2020-10-20T16:35:04Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Khachay M. Towards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depots / M. Khachay, Y. Ogorodnikov. — DOI 10.1016/j.ifacol.2019.11.606 // IFAC-PapersOnLine. — 2019. — Vol. 13. — Iss. 52. — P. 2644-2649. | en |
dc.identifier.issn | 2405-8963 | - |
dc.identifier.other | https://doi.org/10.1016/j.ifacol.2019.11.606 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | e18d01d6-782e-441c-ab04-fb3240c40138 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078949951 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/92263 | - |
dc.description.abstract | We consider the Euclidean Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). For the long time, approximability of this well-known problem in the class of algorithms with theoretical guarantees was poorly studied. This year, for the case of a single depot, we proposed two approximation algorithms, which are the Efficient Polynomial Time Approximation Schemes (EPTAS) for any fixed given capacity q and the number p of mutually disjunctive time windows. The former scheme extends the celebrated approach proposed by M. Haimovich and A. Rinnooy Kan and allows the evident parallelization, while the latter one has an improved time complexity bound and the enlarged domain in terms q = q(n) and p = p(n), where it retains polynomial time complexity. In this paper, we announce an extension of these results to the case of multiple depots. So, the first scheme is also EPTAS for any fixed parameters q, p, and m, where m is the number of depots, and remains PTAS for q = o(log log n) and mp = o(log log n). In other turn, the second one is a PTAS for p3q4 = O(log n) and (pq)2 log m = O(log n). © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. | en |
dc.description.sponsorship | Russian Foundation for Basic Research, RFBR: 17-08-01385, 19-07-01243 | en |
dc.description.sponsorship | Michaeffi Khachay was supported by the Russian Foundation for Basic Research, grants no. 17-08-01385 and 19-07-01243. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | IFAC-PapersOnLine | en |
dc.subject | CAPACITATED VEHICLE ROUTING PROBLEM | en |
dc.subject | MULTIPLE DEPOTS | en |
dc.subject | POLYNOMIAL TIME APPROXIMATION SCHEMES | en |
dc.subject | TIME WINDOWS | en |
dc.subject | APPROXIMATION ALGORITHMS | en |
dc.subject | VEHICLE ROUTING | en |
dc.subject | VEHICLES | en |
dc.subject | CAPACITATED VEHICLE ROUTING PROBLEM | en |
dc.subject | MULTIPLE DEPOT | en |
dc.subject | PARALLELIZATIONS | en |
dc.subject | POLYNOMIAL TIME APPROXIMATION SCHEMES | en |
dc.subject | POLYNOMIAL TIME COMPLEXITY | en |
dc.subject | THEORETICAL GUARANTEES | en |
dc.subject | TIME COMPLEXITY | en |
dc.subject | TIME WINDOWS | en |
dc.subject | POLYNOMIAL APPROXIMATION | en |
dc.title | Towards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depots | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.ifacol.2019.11.606 | - |
dc.identifier.scopus | 85078949951 | - |
local.affiliation | Krasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation | |
local.affiliation | Ural Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation | |
local.affiliation | Omsk State Technical University, 11 Mira ave. Omsk644055, Russian Federation | |
local.contributor.employee | Khachay, M., Krasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation, Omsk State Technical University, 11 Mira ave. Omsk644055, Russian Federation | |
local.contributor.employee | Ogorodnikov, Y., Krasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 2644 | - |
local.description.lastpage | 2649 | - |
local.issue | 52 | - |
local.volume | 13 | - |
dc.identifier.wos | 000504282400447 | - |
local.identifier.pure | 11785697 | - |
local.identifier.eid | 2-s2.0-85078949951 | - |
local.fund.rffi | 17-08-01385 | - |
local.fund.rffi | 19-07-01243 | - |
local.identifier.wos | WOS:000504282400447 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1016-j.ifacol.2019.11.606.pdf | 502,69 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.