Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92263
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKhachay, M.en
dc.contributor.authorOgorodnikov, Y.en
dc.date.accessioned2020-10-20T16:35:04Z-
dc.date.available2020-10-20T16:35:04Z-
dc.date.issued2019-
dc.identifier.citationKhachay M. Towards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depots / M. Khachay, Y. Ogorodnikov. — DOI 10.1016/j.ifacol.2019.11.606 // IFAC-PapersOnLine. — 2019. — Vol. 13. — Iss. 52. — P. 2644-2649.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2019.11.606pdf
dc.identifier.other1good_DOI
dc.identifier.othere18d01d6-782e-441c-ab04-fb3240c40138pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078949951m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92263-
dc.description.abstractWe consider the Euclidean Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). For the long time, approximability of this well-known problem in the class of algorithms with theoretical guarantees was poorly studied. This year, for the case of a single depot, we proposed two approximation algorithms, which are the Efficient Polynomial Time Approximation Schemes (EPTAS) for any fixed given capacity q and the number p of mutually disjunctive time windows. The former scheme extends the celebrated approach proposed by M. Haimovich and A. Rinnooy Kan and allows the evident parallelization, while the latter one has an improved time complexity bound and the enlarged domain in terms q = q(n) and p = p(n), where it retains polynomial time complexity. In this paper, we announce an extension of these results to the case of multiple depots. So, the first scheme is also EPTAS for any fixed parameters q, p, and m, where m is the number of depots, and remains PTAS for q = o(log log n) and mp = o(log log n). In other turn, the second one is a PTAS for p3q4 = O(log n) and (pq)2 log m = O(log n). © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 17-08-01385, 19-07-01243en
dc.description.sponsorshipMichaeffi Khachay was supported by the Russian Foundation for Basic Research, grants no. 17-08-01385 and 19-07-01243.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectCAPACITATED VEHICLE ROUTING PROBLEMen
dc.subjectMULTIPLE DEPOTSen
dc.subjectPOLYNOMIAL TIME APPROXIMATION SCHEMESen
dc.subjectTIME WINDOWSen
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectVEHICLE ROUTINGen
dc.subjectVEHICLESen
dc.subjectCAPACITATED VEHICLE ROUTING PROBLEMen
dc.subjectMULTIPLE DEPOTen
dc.subjectPARALLELIZATIONSen
dc.subjectPOLYNOMIAL TIME APPROXIMATION SCHEMESen
dc.subjectPOLYNOMIAL TIME COMPLEXITYen
dc.subjectTHEORETICAL GUARANTEESen
dc.subjectTIME COMPLEXITYen
dc.subjectTIME WINDOWSen
dc.subjectPOLYNOMIAL APPROXIMATIONen
dc.titleTowards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depotsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ifacol.2019.11.606-
dc.identifier.scopus85078949951-
local.affiliationKrasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation
local.affiliationUral Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation
local.affiliationOmsk State Technical University, 11 Mira ave. Omsk644055, Russian Federation
local.contributor.employeeKhachay, M., Krasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation, Omsk State Technical University, 11 Mira ave. Omsk644055, Russian Federation
local.contributor.employeeOgorodnikov, Y., Krasovsky Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 51 Lenin ave, Ekaterinburg, 620002, Russian Federation
local.description.firstpage2644-
local.description.lastpage2649-
local.issue52-
local.volume13-
dc.identifier.wos000504282400447-
local.identifier.pure11785697-
local.identifier.eid2-s2.0-85078949951-
local.fund.rffi17-08-01385-
local.fund.rffi19-07-01243-
local.identifier.wosWOS:000504282400447-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.ifacol.2019.11.606.pdf502,69 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.