Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92246
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBashkirtseva, I.en
dc.date.accessioned2020-10-20T16:34:59Z-
dc.date.available2020-10-20T16:34:59Z-
dc.date.issued2018-
dc.identifier.citationBashkirtseva I. Stochastic Sensitivity Synthesis in Discrete-Time Systems with Parametric Noise / I. Bashkirtseva. — DOI 10.1016/j.ifacol.2018.11.491 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 610-614.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.491pdf
dc.identifier.other1good_DOI
dc.identifier.other57b0f5b4-e1c1-4a5e-a57c-467f4e07a346pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058175260m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92246-
dc.description.abstractDiscrete nonlinear stochastic systems with general parametric noises are considered. To approximate the dispersion of random states, we propose an asymptotic approach based on the stochastic sensitivity analysis. This approach is used for the solution of the stabilization problem for the discrete controlled systems forced by parametric noise. A theory of the synthesis of the stochastic sensitivity by the feedback regulators is elaborated. Regulators minimizing the stochastic sensitivity are used in the problem of the structural stabilization of equilibrium regimes in population dynamics. The efficiency of this technique is demonstrated on the example of the suppression of undesired noisy large-amplitude regular and chaotic oscillations in the Hassell population model. © 2018en
dc.description.sponsorshipРоссийский Фонд Фундаментальных Исследований (РФФИ): 16-08-00388en
dc.description.sponsorshipThis work was partially supported by RFBR (16-08-00388).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectDISCRETE SYSTEMSen
dc.subjectFEEDBACK REGULATORSen
dc.subjectPARAMETRIC NOISEen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.subjectSTRUCTURAL STABILIZATIONen
dc.subjectDIGITAL CONTROL SYSTEMSen
dc.subjectDISCRETE TIME CONTROL SYSTEMSen
dc.subjectFEEDBACKen
dc.subjectSENSITIVITY ANALYSISen
dc.subjectSTABILIZATIONen
dc.subjectDISCRETE - TIME SYSTEMSen
dc.subjectDISCRETE SYSTEMSen
dc.subjectNON-LINEAR STOCHASTIC SYSTEMSen
dc.subjectPARAMETRIC NOISEen
dc.subjectSTABILIZATION PROBLEMSen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.subjectSTOCHASTIC SENSITIVITY ANALYSISen
dc.subjectSTRUCTURAL STABILIZATIONen
dc.subjectSTOCHASTIC SYSTEMSen
dc.titleStochastic Sensitivity Synthesis in Discrete-Time Systems with Parametric Noiseen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38678219-
dc.identifier.doi10.1016/j.ifacol.2018.11.491-
dc.identifier.scopus85058175260-
local.affiliationInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenina, 51, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeBashkirtseva, I., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina, 51, Ekaterinburg, 620000, Russian Federation
local.description.firstpage610-
local.description.lastpage614-
local.issue51-
local.volume32-
dc.identifier.wos000453278300115-
local.identifier.pure8423099-
local.identifier.eid2-s2.0-85058175260-
local.fund.rffi16-08-00388-
local.identifier.wosWOS:000453278300115-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.ifacol.2018.11.491.pdf455,22 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.