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Abstract: Discrete nonlinear stochastic systems with general parametric noises are considered.
To approximate the dispersion of random states, we propose an asymptotic approach based
on the stochastic sensitivity analysis. This approach is used for the solution of the stabilization
problem for the discrete controlled systems forced by parametric noise. A theory of the synthesis
of the stochastic sensitivity by the feedback regulators is elaborated. Regulators minimizing
the stochastic sensitivity are used in the problem of the structural stabilization of equilibrium
regimes in population dynamics. The efficiency of this technique is demonstrated on the example
of the suppression of undesired noisy large-amplitude regular and chaotic oscillations in the

Hassell population model.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Discrete systems, parametric noise, feedback regulators, stochastic sensitivity,

structural stabilization.

1. INTRODUCTION

Studies devoted to the development of the control theory
for nonlinear stochastic systems are actively developed (see
e.g. Krasovskii et al. (1961); Astrom (1970); Fleming et al.
(1975); Sun (2006); Kibzun et al. (2017)). An impact of
random disturbances on the nonlinear dynamical systems
can result in various unexpected phenomena (Horsthemke
(1984); Anishchenko et al. (2007); Crutchfield et al. (1982);
Schuster (1984); Fedotov et al. (2002, 2006)).

A full mathematical description of the dynamics of proba-
bilistic distributions of stochastic discrete systems is given
by the PerronFrobenius equation (Lasota et al. (1994)).
Such type equations can be solved directly only in very
special cases, and using these functional equations in con-
trol problems is very difficult technically. In these circum-
stances, approximations and asymptotics are very useful.

The asymptotic probabilistic analysis based on the stochas-
tic sensitivity has been proposed in (Bashkirtseva et al.
(2010a)), and developed in (Bashkirtseva et al. (2014);
Ryashko et al. (2017); Bashkirtseva et al. (2018a,b)). In
control problems, this approach was used in (Bashkirtseva
et al. (2010b, 2011)).

In the present paper, we extend this technique on the
case of discrete nonlinear stochastic systems with gen-
eral parametric noises. A problem of the synthesis of the
stochastic sensitivity is reduced to the solution of the
quadratic matrix equation. Feedback regulators minimiz-
ing the stochastic sensitivity are constructed.

* This work was partially supported by RFBR (16-08-00388).

An application of the elaborated theory to the important
problem of the structural stabilization of population sys-
tems in presence of parametric noise is given.

2. STOCHASTIC SENSITIVITY OF EQUILIBRIUM
FORCED BY PARAMETRIC NOISE

Consider a general discrete-time nonlinear system
Tip1 = f(ze, M), (1)

where x is an n-vector, and f(x,n) is a smooth vector-
function with /-dimensional vector of parameters 7. It is
supposed that parameters of system (1) are subject to
random disturbances: n; = €;. Here, £, is an [-dimensional
uncorrelated random process with parameters:

E& =0, E&E =V, EGg =0 (t#k).
Here, V is | x [-matrix, and € is a scalar parameter of the
noise intensity.

Let T be an exponentially stable equilibrium of the deter-
ministic system (1) with n = 0: z = f(z,0).

Consider a solution zf of the stochastic system (1) with
initial data x§ = T + €zp, where the n-vector zy defines an
initial deviation.

An asymptotics
i —X

zy = lim
e—0 g

of the deviation of x from Z is governed by the following
linear stochastic equation:

241 = Fze + G, (2)
where of o7
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The deterministic characteristics
my = Ezt, Mt = EZtZ;r

of the random discrete-time process z; are solutions of the
equations:

myy1 = F'my, (3)
My =FM,F" +5, S=GG". (4)

Due to the exponential stability of Z, the spectral radius
of the matrix F satisfies the inequality p(F') < 1. Hence,
the system (3) has a unique stable stationary solution
m = lim;_,oo my = 0. The system (4) also has a unique
stable stationary solution M = lim;_,,, M, satisfying the
following matrix equation

M=FMF" +8. (5)

The matrix M is the stochastic sensitivity matrix of the
equilibrium Z. This matrix allows us to approximate a
dispersion of stationary distributed random states xf of
nonlinear stochastic system (1) near z:

cov(zs,zf) ~ 2 M.
Further, consider how one can control this distribution

by the synthesis of the appropriate stochastic sensitivity
matrix M.

3. SYNTHESIS OF STOCHASTIC SENSITIVITY

Consider a discrete-time nonlinear system with parametric
noise and control

Tip1 = f(xtautant)7 e = &&t, (6)

where x is an n-dimensional vector, u is r-dimensional
vector of the control input, f(z,u,n) is a smooth vector-
function, and &; is an [-dimensional vector of random
disturbances with parameters:

E& =0, E&E =V, EB&E =0 (1 #£ k).

Here, V is [ X [-matrix, and ¢ is a scalar parameter of the
noise intensity.

Let Z be an equilibrium of the deterministic system (6)
with v = 0, n = 0. Note that the stability of Z is not
supposed.

We will consider the feedback control v = w(z). It is
assumed that «(Z) = 0, and Z is exponentially stable in
the closed-loop deterministic system

Ti4+1 = f(lL’t,U(iEt),O). (7)
For the asymptotics z; = lim._,g E:Q of deviations of
solutions z§ of the closed-loop stochastic system
i1 = f(@e, u(w), &) (8)
from the deterministic equilibrium Z, one can write
Zt4+1 = (F + BK)Zt + Gft (9)
Here,
of of .
F=_—(z,0,0), G=—-(2,0,0
aw (x7 K )7 a/r] (x7 K )7
0] 0
B=%00), k=2

ou

First two moments m; = Ez;, M; = Eztth satisfy the

equations
(10)

(11)

The set K of matrices K that provide an exponential
stability of the equilibrium Z of system (7) can be written
as

mi4+1 = <F+ BK)mt,
M,y = (F+ BK)M,(F + BK)" + 8.

K ={K|p(F + BK) < 1}.
We suppose that the set K is not empty.

For any K € K, the equation (11) has a unique stable
stationary solution M = lim;_,., M; which satisfies the
matrix equation

M = (F+ BK)M(F+BK)" +8. (12)
Consider now how the stochastic sensitivity matrix M
depends on the feedback u(z). As one can see, M is fully

defined only by the local parameters K = a—u(:f) So, we
x
can consider the regulators of a simple linear structure
u(z) = K(z — ). (13)

We now consider the problem of the synthesis of the
assigned stochastic sensitivity matrix M by an appropriate
regulator (13).

Let M ={M € R"™"|M > 0} be a set of the admissible
stochastic sensitivity matrices. Here, M > 0 means that
the matrix M is symmetric and positive definite. We
denote by My the solution of the equation (12) for the
fixed matrix K € K. The aim of control is the synthesis
of the assigned stochastic sensitivity matrix.

Let W be the required stochastic sensitivity matrix of the
system (8), (13). In order to find the matrix K € K
which provides the equality Mx = W, we have to solve
the following quadratic matrix equation

W =FWF'"+FWK'BT + BKWFT+

(14)
+BKWK'B" + 8.
In some cases, this equation is unsolvable, therefore, a pre-
liminary attainability analysis Bashkirtseva et al. (2010Db)
should be carried out.

In the one-dimensional case (n = r =1 = 1), the equation
(14) is written as

B*WK? +2BFWK + F*W + S —W =0.
For this quadratic equation, the discriminant is D =
4B?W (W — S), therefore the inequality W > S is a
condition of attainability. For B # 0, we obtain an explicit
formula for the feedback coefficient

1 / S
K=——|-F+\/1—-—]. 1
The function Mg has the form
S
Mg=——"—"°"—. 1
K= 1-(F+BK)? (16)

Note that the value Mg is minimal (Mg = S) for K =
—F/B.
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Fig. 1. Bifurcation diagram of the deterministic Hassell
model without control

Consider now how this general theory can be applied to
the problem of the structural stabilization of the dynamics
of population systems.

4. STRUCTURAL STABILIZATION OF THE
STOCHASTIC HASSELL MODEL

In population dynamics theory, an important role is played
by the simple so-called conceptual models. Along with the
well-known logistic model, the discrete system proposed
by Hassell (see Hassell (1975)) is widely used. This model
exhibits a variety of dynamical regimes, both regular and
chaotic (Geritz et al. (2004); Bascompte et al. (1994)).
Here, we consider Hassell-type discrete model with em-
bedded Allee effect.

In this model, there exists a trivial stable equilibrium
corresponding to the extinction. Mathematically, the pop-
ulation dynamics in persistence regime is described by the
nontrivial attractor in the form of equilibrium, periodic,
and chaotic oscillations.

Consider the following Hassell-type population model with
Allee effect:
2

. . axy
T Bt m)s

(17)
Here, x; is a population size at the time ¢, the positive
parameter « stands for the intrinsic growth rate, and
[ defines the carrying capacity of the environment. The
trivial equilibrium Zo = 0 of this system is stable for
any parameters. Along with Zy = 0, the system (17) can
possess two more equilibria Z, T : Ty < & < Z. The
equilibrium Z is always unstable, and the stability of &
depends on system parameters.

In what follows, we study system dynamics under the
variation of the parameter g for fixed a = 1. In Fig. 1, the
bifurcation diagram of the model (17) is presented. Here,
the unstable equilibrium Z is shown by red dashed line,
and nontrivial attractors (Feigenbaum’s tree) are plotted
by grey. As one can see, the persistence 5-zone for system
(17) is bounded by the interval 51 < B < 2, where
£1 = 0.2202 marks the crisis bifurcation, and s = 0.5824
marks the saddle-node bifurcation. Outside this interval,
the population is extinct for all initial values xg.
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Fig. 2. Random states of the stochastic Hassell model
without control (grey) and with control (black) for
a) € = 0.001, b) € = 0.005, ¢) ¢ = 0.01.

Note that in the interval 81 < B < (2, the system is
bistable. One of the coexisting attractors (trivial equi-
librium) is associated with the regime of extinction, and
another one corresponds to the persistence regime. This
persistence regime exists in the form of equilibria, regular,
or chaotic oscillations. The unstable equilibrium playing a
role of the separatrix for basins of attraction is a dangerous
border between regimes of persistence and extinction.

Along with the deterministic system (17), consider the
stochastic system

2

I ar;
t+1 (ﬁ+5£t+1't)6’

(18)
with the stochastically forced parameter 3 of the carrying
capacity. Here, &; is a standard uncorrelated discrete-time
Gaussian process, ¢ is the noise intensity.

Under random perturbations, a thin structure of the
Feigenbaum’s tree is washed out (see Fig. 2, grey color).
With increasing noise, the trajectory of system (18) can
intersect the separatrix (dashed line) and fall into the
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Fig. 3. Time series of the stochastic system with € = 0.005
and a) f = 0.4 (deterministic 2-cycle), b) § = 0.32
(chaotic attractor). The control is switched on at
t = 40.

basin of attraction of the trivial equilibrium Zy = 0. This
behavior corresponds to the noise-induced extinction.

To prevent these undesirable ecological shifts caused by
noise, consider an appropriate control procedure. The
model (18) with control looks like

2
ox;

(B+¢e& +x4)8 e = K(xt a E(ﬂ))

Tiyy = (19)

Here, we use the feedback regulator that forms the control
input proportional to the deviation of the state x; from
the equilibrium Z(5). To stabilize the stochastic dynamics
of system (19) near Z(3), we will use the theory of
the stochastic sensitivity synthesis. Here, we will use
the regulator which provides the minimal value of the
stochastic sensitivity. An effectiveness of the proposed
control approach is illustrated in Figs. 2, 3.

In Fig. 3, we compare uncontrolled and controlled stochas-
tic dynamics for two fixed values 8 = 0.4 and 5 = 0.32.
For 8 = 0.4, the deterministic uncontrolled system (17)
has regular oscillations (2-cycle). Under the random dis-
turbances with € = 0.005, we observe noisy oscillations
(Fig. 3a for 0 < ¢ < 40). At t = 40, we switch on the con-
trol synthesizing the minimal stochastic sensitivity of the
equilibrium Z. Stochastic dynamics of system with such
control is shown in Fig. 3a for ¢t > 40. Here, one can observe
small-amplitude stochastic oscillations. Note that here this
regulator not only stabilizes the unstable equilibrium z but
also provides a small dispersion of random states around
Z.

For 8 = 0.32, the deterministic uncontrolled system
(17) demonstrates chaotic oscillations. Under the random
disturbances with £ = 0.005, we observe noisy chaos (see
Fig. 3b for 0 < ¢ < 40). At t = 40, our optimal regulator
minimizing stochastic sensitivity of the equilibrium Zz is
switched on. Stochastic dynamics of the controlled system
is shown in Fig. 3b for ¢ > 40. Again, we observe the
suppression of large-amplitude stochastic oscillations.

Results of the optimal control for the whole parametric
B-zone are shown in Fig. 2 by black color for three values
of the noise intensity. As one can see, this control provides
the structural stabilization in the wide range of system
parameters.

REFERENCES

V. S. Anishchenko, V. Astakhov, A. Neiman, T. Vadi-
vasova, L. Schimansky-Geier. Nonlinear Dynamics of
Chaotic and Stochastic Systems. Springer, Berlin, 2007.

K. J. Astrom. Introduction to the Stochastic Control
Theory. Academic Press, New York, 1970.

J. Bascompte, R. V. Solé. Spatially induced bifurcations in
single-species population dynamics. Journal of Animal
Ecology, 63:256-264, 1994.

I. Bashkirtseva, L. Ryashko, I. Tsvetkov. Sensitivity anal-
ysis of stochastic equilibria and cycles for the discrete
dynamic systems. Dynamics of Continuous, Discrete
and Impulsive Systems, Series A: Mathematical Analy-
sis, 17:501-515, 2010a.

I. Bashkirtseva, L. Ryashko.
nonlinear stochastic discrete-time systems
Autom. Contr, 56:2162-2166, 2011.

I. Bashkirtseva, L. Ryashko. Stochastic sensitivity of
the closed invariant curves for discrete-time systems.
Physica A, 410:236-243, 2014.

I. Bashkirtseva, L. Ryashko. Noise-induced torus bursting
in the stochastic Hindmarsh-Rose neuron model. Phys.
Rev. E, 96:032212, 2017.

I. Bashkirtseva, V. Nasyrova, L. Ryashko. Noise-induced
bursting and chaos in the two-dimensional Rulkov
model. Chaos, Solitons and Fractals, 110:76-81, 2018a.

I. Bashkirtseva, L. Ryashko. Noise-induced shifts in the
population model with a weak Allee effect. Physica A,
491:28-36, 2018b.

I. A. Bashkirtseva, L. B. Ryashko. On stochastic sensitiv-
ity control in discrete systems. Automation and Remote
Control, 71:1833-1848, 2010b.

J. P. Crutchfield, J. D. Farmer, B. A. Huberman. Fluc-
tuations and simple chaotic dynamics. Physics Reports,
92:4582, 1982.

S. Fedotov, I. Bashkirtseva, L. Ryashko. Stochastic anal-
ysis of a non-normal dynamical system mimicking a
laminar-to-turbulent subcritical transition. Phys. Rewv.
E, 66:066310, 2002.

S. Fedotov, I. Bashkirtseva, L. Ryashko. Stochastic dy-
namo model for subcritical transition. Phys. Rev. E, 73:
066307, 2006.

W. H. Fleming, R. W. Rishel. Deterministic and Stochastic
Optimal Control. Springer, New York, 1975.

S. A. Geritz, E. Kisdi. On the mechanistic underpinning of
discrete-time population models with complex dynam-
ics. J. Theor. Biol, 228:261-269, 2004.

M. P. Hassell. Density-dependence in single-species popu-
lations. Journal of Animal Ecology, 44:283-295, 1975.

Control of equilibria for
IEEE Tr.



614 Irina Bashkirtseva /IFAC PapersOnLine 51-32 (2018) 610-614

W. Horsthemke, R. Lefever. Noise-Induced Transitions.
Springer, Berlin, 1984.

A. 1. Kibzun, A. N. Ignatov. On the existence of optimal
strategies in the control problem for a stochastic discrete
time system with respect to the probability criterion.
Automation and Remote Control, 78:1845-1856, 2017.

N. N. Krasovskii, E. A. Lidskii. Analytic regulator design
in systems with random properties. Automation and
Remote Control, 22:1145-1150, 1961.

A. Lasota, M. C. Mackey. Chaos, Fractals, and Noise:
Stochastic Aspects of Dynamics. Springer, Berlin, 1994.

H. G. Schuster. Deterministic Chaos. An Introduction.
Physik-Verlag, Weinheim, 1984.

J.-Q. Sun. Stochastic Dynamics and Control. Elsevier,
2006.



