Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92226
Title: Analysis of Economic Growth Models via Value Function Design
Authors: Bagno, A. L.
Tarasyev, A. M.
Issue Date: 2018
Publisher: Elsevier B.V.
Citation: Bagno A. L. Analysis of Economic Growth Models via Value Function Design / A. L. Bagno, A. M. Tarasyev. — DOI 10.1016/j.ifacol.2018.11.494 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 624-629.
Abstract: Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals. An example is given to illustrate construction of the value function in economic growth models. © 2018
Keywords: HAMILTON-JACOBI EQUATIONS
OPTIMAL CONTROL
STABILITY PROPERTIES
VALUE FUNCTION
ECONOMICS
MECHANICS
OPTIMAL CONTROL SYSTEMS
OPTIMIZATION
STABILITY
ASYMPTOTIC BEHAVIORS
ECONOMIC GROWTH MODELS
HAMILTON - JACOBI EQUATIONS
INFINITE HORIZONS
OPTIMAL CONTROL PROBLEM
OPTIMAL CONTROLS
STABILITY PROPERTIES
VALUE FUNCTIONS
QUALITY CONTROL
URI: http://elar.urfu.ru/handle/10995/92226
Access: info:eu-repo/semantics/openAccess
RSCI ID: 38679246
SCOPUS ID: 85058217488
WOS ID: 000453278300118
PURE ID: 8416255
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.11.494
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.494.pdf429,42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.