Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/92226
Title: | Analysis of Economic Growth Models via Value Function Design |
Authors: | Bagno, A. L. Tarasyev, A. M. |
Issue Date: | 2018 |
Publisher: | Elsevier B.V. |
Citation: | Bagno A. L. Analysis of Economic Growth Models via Value Function Design / A. L. Bagno, A. M. Tarasyev. — DOI 10.1016/j.ifacol.2018.11.494 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 624-629. |
Abstract: | Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals. An example is given to illustrate construction of the value function in economic growth models. © 2018 |
Keywords: | HAMILTON-JACOBI EQUATIONS OPTIMAL CONTROL STABILITY PROPERTIES VALUE FUNCTION ECONOMICS MECHANICS OPTIMAL CONTROL SYSTEMS OPTIMIZATION STABILITY ASYMPTOTIC BEHAVIORS ECONOMIC GROWTH MODELS HAMILTON - JACOBI EQUATIONS INFINITE HORIZONS OPTIMAL CONTROL PROBLEM OPTIMAL CONTROLS STABILITY PROPERTIES VALUE FUNCTIONS QUALITY CONTROL |
URI: | http://elar.urfu.ru/handle/10995/92226 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 38679246 |
SCOPUS ID: | 85058217488 |
WOS ID: | 000453278300118 |
PURE ID: | 8416255 |
ISSN: | 2405-8963 |
DOI: | 10.1016/j.ifacol.2018.11.494 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1016-j.ifacol.2018.11.494.pdf | 429,42 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.