Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/92221
Title: On Approximation of Multivalued Solution for Hamilton—Jacobi equation
Authors: Kolpakova, E. A.
Issue Date: 2018
Publisher: Elsevier B.V.
Citation: Kolpakova E. A. On Approximation of Multivalued Solution for Hamilton—Jacobi equation / E. A. Kolpakova. — DOI 10.1016/j.ifacol.2018.11.447 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 805-809.
Abstract: The paper deals with the Cauchy problem for Hamilton—Jacobi equation with discontinuous w.r.t. state variable Hamiltonian. In this case we use the notion of M-solution proposed by Subbotin. We consider the sequence of auxiliary Cauchy problems for Hamilton— Jacobi equations with Lipschitz continuous w.r.t. phase variable Hamiltonians. We show that the sequence of distances between of graphs of solutions for auxiliary Cauchy problems and graph of M-solution tends to zero in metrics L1. © 2018
Keywords: CONVERGENCE IN L1
HAMILTON—JACOBI EQUATION
MINIMAX/VISCOSITY SOLUTION
MULTIVALUED SOLUTION
VIABILITY SET
CONVERGENCE IN L^1
JACOBI EQUATION
MINIMAX
MULTI-VALUED SOLUTION
VIABILITY SET
HAMILTONIANS
URI: http://hdl.handle.net/10995/92221
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85058222084
WOS ID: 000453278300151
PURE ID: 8415674
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.11.447
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.447.pdf378,79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.