Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/92221
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKolpakova, E. A.en
dc.date.accessioned2020-10-20T16:34:52Z-
dc.date.available2020-10-20T16:34:52Z-
dc.date.issued2018-
dc.identifier.citationKolpakova E. A. On Approximation of Multivalued Solution for Hamilton—Jacobi equation / E. A. Kolpakova. — DOI 10.1016/j.ifacol.2018.11.447 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 805-809.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.447pdf
dc.identifier.other1good_DOI
dc.identifier.otherce2899f6-3c4f-4c59-8cd6-7205a0a05381pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058222084m
dc.identifier.urihttp://hdl.handle.net/10995/92221-
dc.description.abstractThe paper deals with the Cauchy problem for Hamilton—Jacobi equation with discontinuous w.r.t. state variable Hamiltonian. In this case we use the notion of M-solution proposed by Subbotin. We consider the sequence of auxiliary Cauchy problems for Hamilton— Jacobi equations with Lipschitz continuous w.r.t. phase variable Hamiltonians. We show that the sequence of distances between of graphs of solutions for auxiliary Cauchy problems and graph of M-solution tends to zero in metrics L1. © 2018en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectCONVERGENCE IN L1en
dc.subjectHAMILTON—JACOBI EQUATIONen
dc.subjectMINIMAX/VISCOSITY SOLUTIONen
dc.subjectMULTIVALUED SOLUTIONen
dc.subjectVIABILITY SETen
dc.subjectCONVERGENCE IN L^1en
dc.subjectJACOBI EQUATIONen
dc.subjectMINIMAXen
dc.subjectMULTI-VALUED SOLUTIONen
dc.subjectVIABILITY SETen
dc.subjectHAMILTONIANSen
dc.titleOn Approximation of Multivalued Solution for Hamilton—Jacobi equationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ifacol.2018.11.447-
dc.identifier.scopus85058222084-
local.affiliationKrasovskii Institute of Mathematics and Mechanics UrB RAS, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeKolpakova, E.A., Krasovskii Institute of Mathematics and Mechanics UrB RAS, Ural Federal University, Yekaterinburg, Russian Federation
local.description.firstpage805-
local.description.lastpage809-
local.issue51-
local.volume32-
dc.identifier.wos000453278300151-
local.identifier.pure8415674-
local.identifier.eid2-s2.0-85058222084-
local.identifier.wosWOS:000453278300151-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.447.pdf378,79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.