Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/91722
Title: Прогнозирование социально-экономического развития российских регионов
Other Titles: Forecasting of socio-economic development of the Russian regions
Authors: Gagarina, G. Y.
Dzyuba, E. I.
Gubarev, R. V.
Fayzullin, F. S.
Гагарина, Г. Ю.
Дзюба, Е. И.
Губарев, Р. В.
Файзуллин, Ф. С.
Issue Date: 2017
Publisher: Institute of Economics, Ural Branch of the Russian Academy of Sciences
Институт экономики Уральского отделения РАН
Citation: Прогнозирование социально-экономического развития российских регионов / Г. Ю. Гагарина, Е. И. Дзюба, Р. В. Губарев, Ф. С. Файзуллин. — DOI 10.17059/2017-4-9. — Текст : электронный // Экономика региона. — 2017. — Том 13, выпуск 4. — С. 1080-1094.
Abstract: The regional differentiation makes impossible the sustainable socio-economic development of the subjects of the Russian Federation without the monitoring public governance results in space and time. Despite the comprehensive approach of the current procedure, approved by the federal government, it does not adequately assess the executive authorities effectiveness. Its main problem is the impossibility to assume such important administrative function as forecasting the social and economic development of Russian territorial subjects. The authors propose an alternative methodology on the basis of the system economic theory. This technique is implemented in several consecutive stages. Firstly, we develop the system of 30 indicators. Secondly, we normalize the values of the indicators using the method of pattern. Thirdly, we calculate the index of the social and economic development of Russian regions for 2011-2015 assuming that the indicators are equal. Last, we group Russian regions into clusters according to the level of their social and economic development using neural network technologies (Kohonen self-organizing maps). Only 9 in 80 subjects of the Russian Federation (RF) had the degree of realizing the social and economic potential higher than 40 % during the period under consideration. In 2011-2015, the most of regions had a low and lower than average level of social and economic development (with an aggregate share about 64.3 %). It means that, under current conditions, the majority of the RF regions have considerable reserves for realizing their social-economic potential. In particular, the absence of the territorial subjects with a high level of social and economic development proves that. The authors have simulated the social and economic situation of the RF subjects by means of an adequate Bayesian neural networks. The obtained results can be used as the basis for further research in the field of evaluating executive authorities effectiveness and forecasting the level of social and economic development of Russian regions.
Проанализирована действующая методика оценки эффективности деятельности органов исполнительной власти субъектов Российской Федерации. Выявлены недостатки данной методики. Предложена альтернативная методика мониторинга результатов государственного управления, с помощью которой реализуется такая важная управленческая функция, как прогнозирование. Дана оценка уровня социально-экономического развития регионов по альтернативной методике.
Keywords: BAYESIAN NEURAL NETWORKS
CLUSTERING OF REGIONS
EFFICIENCY OF PUBLIC ADMINISTRATION
EVALUATION METHODOLOGY
INTERREGIONAL DIFFERENTIATION
MULTILAYER PERCEPTRON
NEUROMODULATION
REGIONAL SOCIO-ECONOMIC DEVELOPMENT
SPATIAL DEVELOPMENT
SYSTEMIC APPROACH
URI: http://elar.urfu.ru/handle/10995/91722
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85040314777
WOS ID: 000419294600009
ISSN: 2411-1406
2072-6414
DOI: 10.17059/2017-4-9
Origin: Экономика региона. 2017. Том 13, выпуск 4
Appears in Collections:Economy of Regions

Files in This Item:
File Description SizeFormat 
2017_13_4_009.pdf500,35 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.