Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90778
Название: Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields
Авторы: Mostarac, D.
Sánchez, P. A.
Kantorovich, S.
Дата публикации: 2020
Издатель: Royal Society of Chemistry
Библиографическое описание: Mostarac, D. Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields / D. Mostarac, P. A. Sánchez, S. Kantorovich. — DOI 10.1039/d0nr01646b // Nanoscale. — 2020. — Vol. 26. — Iss. 12. — P. 13933-13948.
Аннотация: Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such structures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently crosslinked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily tuneable computational models, where we consider two distinct crosslinking approaches, for both ferromagnetic and super-paramagnetic monomers. We characterise the equilibrium structure, correlations and magnetic properties of MFs in static magnetic fields. Calculations show that MFs with ferromagnetic MNPs in crosslinking scenarios where the dipole moment orientations are decoupled from the filament backbone, have similar properties to MFs with super-paramagnetic monomers. At the same time, magnetic properties of MFs with ferromagnetic MNPs are more dependent on the crosslinking approach than they are for ones with super-paramagnetic monomers. Our results show that, in a strong applied field, MFs with super-paramagnetic MNPs have similar magnetic properties to ferromagnetic ones, while exhibiting higher susceptibility in low fields. We find that MFs with super-paramagnetic MNPs have a tendency to bend the backbone locally rather than to fully stretch along the field. We explain this behaviour by supplementing Flory theory with an explicit dipole-dipole interaction potential, with which we can take in to account folded filament configurations. It turns out that the entropy gain obtained through bending compensates an insignificant loss in dipolar energy for the filament lengths considered in the manuscript. © 2020 The Royal Society of Chemistry.
Ключевые слова: COMPUTATION THEORY
COMPUTATIONAL CHEMISTRY
FERROMAGNETIC MATERIALS
FERROMAGNETISM
MAGNETIC PROPERTIES
MOLECULAR DYNAMICS
MONOMERS
PARAMAGNETISM
SYNTHESIS (CHEMICAL)
COMPUTATIONAL MODEL
CROSS-LINKED POLYMERS
DIPOLE DIPOLE INTERACTIONS
EQUILIBRIUM STRUCTURES
MAGNETIC FILAMENTS
MAGNETIC NANOPARTI CLES (MNPS)
MOLECULAR DYNAMICS SIMULATIONS
STATIC MAGNETIC FIELDS
MAGNETIC NANOPARTICLES
URI: http://elar.urfu.ru/handle/10995/90778
Условия доступа: info:eu-repo/semantics/openAccess
cc-by-nc
Идентификатор SCOPUS: 85088485851
Идентификатор WOS: 000547632900044
Идентификатор PURE: 13388356
ISSN: 2040-3364
DOI: 10.1039/d0nr01646b
Сведения о поддержке: Austrian Science Fund, FWF: START-Projekt Y 627-N27
Russian Science Foundation, RSF: 19-12-00209
This research has been supported by the Russian Science Foundation Grant No. 19-12-00209. Authors acknowledge support from the Austrian Research Fund (FWF), START-Projekt Y 627-N27. Computer simulations were performed at the Vienna Scientific Cluster (VSC-3).
Карточка проекта РНФ: 19-12-00209
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1039-d0nr01646b.pdf7,69 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.