Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/90672
Title: Automorphisms of distance regular graph with intersection array 30, 27, 24; 1, 2, 10
Authors: Makhnev, A. A.
Belousova, V. I.
Issue Date: 2019
Publisher: Sobolev Institute of Mathematics
Citation: Makhnev, A. A. Automorphisms of distance regular graph with intersection array 30, 27, 24; 1, 2, 10 / A. A. Makhnev, V. I. Belousova. — DOI 10.33048/semi.2019.16.031 // Siberian Electronic Mathematical Reports. — 2019. — Iss. 16. — P. 493-500.
Abstract: Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array 30, 27, 24; 1, 2, 10. Let G = Aut(Γ) is nonsolvable group, G = G=S(G) and T is the socle of G. If Γ is vertex-symmetric then (G) is f2g-group, and T ≅= L2(11),M11,U5(2),M22,A11,HiS. © 2019, Sobolev Institute of Mathematics.
Keywords: AUTOMORPHISM
DISTANCE-REGULAR GRAPH
STRONGLY REGULAR GRAPH
URI: http://elar.urfu.ru/handle/10995/90672
Access: info:eu-repo/semantics/openAccess
RSCI ID: 42735076
SCOPUS ID: 85071168899
WOS ID: 000465436800001
PURE ID: 9316469
ISSN: 1813-3304
DOI: 10.33048/semi.2019.16.031
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.33048-semi.2019.16.031.pdf203,6 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.