Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/90576
Title: | Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline bi films electrodeposited from perchlorate electrolyte |
Authors: | Tishkevich, D. Grabchikov, S. Zubar, T. Vasin, D. Trukhanov, S. Vorobjova, A. Yakimchuk, D. Kozlovskiy, A. Zdorovets, M. Giniyatova, S. Shimanovich, D. Lyakhov, D. Michels, D. Dong, M. Gudkova, S. Trukhanov, A. |
Issue Date: | 2020 |
Publisher: | MDPI AG |
Citation: | Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline bi films electrodeposited from perchlorate electrolyte / D. Tishkevich, S. Grabchikov, T. Zubar, D. Vasin, et al. . — DOI 10.3390/NANO10061245 // Nanomaterials. — 2020. — Vol. 6. — Iss. 10. — P. 1-17. |
Abstract: | Bi nanocrystalline films were formed from perchlorate electrolyte (PE) on Cu substrate via electrochemical deposition with different duration and current densities. The microstructural, morphological properties, and elemental composition were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray microanalysis (EDX). The optimal range of current densities for Bi electrodeposition in PE using polarization measurements was demonstrated. For the first time, it was shown and explained why, with a deposition duration of 1 s, co-deposition of Pb and Bi occurs. The correlation between synthesis conditions and chemical composition and microstructure for Bi films was discussed. The analysis of the microstructure evolution revealed the changing mechanism of the films’ growth from pillar-like (for Pb-rich phase) to layered granular form (for Bi) with deposition duration rising. This abnormal behavior is explained by the appearance of a strong Bi growth texture and coalescence effects. The investigations of porosity showed that Bi films have a closely-packed microstructure. The main stages and the growth mechanism of Bi films in the galvanostatic regime in PE with a deposition duration of 1–30 s are proposed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. |
Keywords: | BISMUTH CO-DEPOSITION ELECTROCHEMICAL DEPOSITION FILMS GROWTH MECHANISM LEAD MORPHOLOGY PERCHLORATE ELECTROLYTE |
URI: | http://elar.urfu.ru/handle/10995/90576 |
Access: | info:eu-repo/semantics/openAccess cc-by |
SCOPUS ID: | 85089603994 |
WOS ID: | 000553565900001 |
PURE ID: | 13682278 |
ISSN: | 2079-4991 |
DOI: | 10.3390/NANO10061245 |
metadata.dc.description.sponsorship: | Government Council on Grants, Russian Federation 2.34 Funding: The work was performed with support of State Scientific and Technical Program “Nanotech” (task No. 2.34), Branch Scientific and Technical Program “Nanotechnology and Nanomaterials” (task No. 1), Act 211 of Government of Russian Federation (contract No. 02.A03.21.0011). Additionally, the work was partially supported by the Grant of World Federation of Scientists (Geneva, Switzerland). |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.3390-NANO10061245.pdf | 4,67 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.