Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/90526
Title: The chemical structure of the very young starless core L1521E
Authors: Nagy, Z.
Spezzano, S.
Caselli, P.
Vasyunin, A.
Tafalla, M.
Bizzocchi, L.
Prudenzano, D.
Redaelli, E.
Issue Date: 2019
Publisher: EDP Sciences
Citation: The chemical structure of the very young starless core L1521E / Z. Nagy, S. Spezzano, P. Caselli, A. Vasyunin, et al. . — DOI 10.1051/0004-6361/201935568 // Astronomy and Astrophysics. — 2019. — Iss. 630. — A136.
Abstract: Context. L1521E is a dense starless core in Taurus that was found to have relatively low molecular depletion by earlier studies, thus suggesting a recent formation. Aims. We aim to characterize the chemical structure of L1521E and compare it to the more evolved L1544 pre-stellar core. Methods. We have obtained ∼2.5 × 2.5 arcminute maps toward L1521E using the IRAM-30 m telescope in transitions of various species, including C17O, CH3OH, c-C3H2, CN, SO, H2CS, and CH3CCH. We derived abundances for the observed species and compared them to those obtained toward L1544. We estimated CO depletion factors using the C17O IRAM-30 m map, an N(H2) map derived from Herschel/SPIRE data and a 1.2 mm dust continuum emission map obtained with the IRAM-30 m telescope. Results. Similarly to L1544, c-C3H2 and CH3OH peak at different positions. Most species peak toward the c-C3H2 peak including C2S, C3S, HCS+, HC3N, H2CS, CH3CCH, and C34S. C17O and SO peak close to both the c-C3H2 and the CH3OH peaks. CN and N2H+ peak close to the Herschel dust peak. We found evidence of CO depletion toward L1521E. The lower limit of the CO depletion factor derived toward the Herschel dust peak is 4.3±1.6, which is about a factor of three lower than toward L1544. We derived abundances for several species toward the dust peaks of L1521E and L1544. The abundances of most sulfur-bearing molecules such as C2S, HCS+, C34S, C33S, and HCS+ are higher toward L1521E than toward L1544 by factors of ∼2-20, compared to the abundance of A-CH3OH. The abundance of methanol is very similar toward the two cores. Conclusions. The fact that the abundances of sulfur-bearing species toward L1521E are higher than toward L1544 suggests that significant sulfur depletion takes place during the dynamical evolution of dense cores, from the starless to pre-stellar stage. The CO depletion factor measured toward L1521E suggests that CO is more depleted than previously found. Similar CH3OH abundances between L1521E and L1544 hint that methanol is forming at specific physical conditions in the Taurus Molecular Cloud Complex, characterized by densities of a few ×104 cm-3 and N(H2) ≥ 1022 cm-2, when CO starts to catastrophically freeze-out, while water can still be significantly photodissociated, so that the surfaces of dust grains become rich in solid CO and CH3OH, as already found toward L1544. Methanol can thus provide selective crucial information about the transition region between dense cores and the surrounding parent cloud. © Z. Nagy et al. 2019.
Keywords: ISM: CLOUDS
ISM: MOLECULES
RADIO LINES: ISM
METHANOL
MOLECULES
STARS
STRUCTURE (COMPOSITION)
SULFUR
TELESCOPES
CONTINUUM EMISSION
DEPLETION FACTORS
DYNAMICAL EVOLUTION
ISM : CLOUDS
ISM: MOLECULES
PHYSICAL CONDITIONS
RADIO LINES: ISM
TRANSITION REGIONS
DUST
URI: http://elar.urfu.ru/handle/10995/90526
Access: info:eu-repo/semantics/openAccess
cc-by
SCOPUS ID: 85073243193
WOS ID: 000516617700001
PURE ID: 11103647
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201935568
Sponsorship: Russian Science Foundation, RSF: 18-12-00351
Acknowledgements. The work by A.V. is supported by the Russian Science Foundation via the project 18-12-00351. M.T. acknowledges funding from project AYA2016-79 006-P.
RSCF project card: 18-12-00351
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1051-0004-6361-201935568.pdf1,73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.