Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90503
Название: Generalization properties of neural network approximations to frustrated magnet ground states
Авторы: Westerhout, T.
Astrakhantsev, N.
Tikhonov, K. S.
Katsnelson, M. I.
Bagrov, A. A.
Дата публикации: 2020
Издатель: Nature Research
Библиографическое описание: Generalization properties of neural network approximations to frustrated magnet ground states / T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I. Katsnelson, et al. . — DOI 10.1038/s41467-020-15402-w // Nature Communications. — 2020. — Vol. 1. — Iss. 11. — 1593.
Аннотация: Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by training neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wave function structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of samples and correctly approximate the target state on the rest of the space, drops abruptly when frustration is increased. We also show that learning the sign structure is considerably more difficult than learning amplitudes. Finally, we conclude that the main issue to be addressed at this stage, in order to use the method of NQS for simulating realistic models, is that of generalization rather than expressibility. © 2020, The Author(s).
Ключевые слова: ARTIFICIAL NEURAL NETWORK
LEARNING
MODEL
SIMULATION
TRAINING
AMPLITUDE MODULATION
ARTICLE
ARTIFICIAL NEURAL NETWORK
BINOCULAR CONVERGENCE
LEARNING
MATHEMATICAL ANALYSIS
QUANTUM CHEMISTRY
SPACE
STRUCTURE ANALYSIS
URI: http://elar.urfu.ru/handle/10995/90503
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85082530092
Идентификатор WOS: 000522437900009
Идентификатор PURE: 12423821
ISSN: 2041-1723
DOI: 10.1038/s41467-020-15402-w
Сведения о поддержке: Russian Science Foundation, RSF: 18-12-00185, 16-12-10059
Alexander von Humboldt-Stiftung: 0033-2019-0002
Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO
European Research Council, ERC: 338957 FEMTO/ NANO
We are thankful to Dmitry Ageev and Vladimir Mazurenko for collaboration during the early stages of the project. We have significantly benefited from encouraging discussions with Giuseppe Carleo, Juan Carrasquilla, Askar Iliasov, Titus Neupert, and Slava Rychkov. The research was supported by the ERC Advanced Grant 338957 FEMTO/ NANO and by the NWO via the Spinoza Prize. The work of A.A.B. which consisted of designing the project (together with K.S.T.), implementation of prototype version of the code, and providing general guidance, was supported by Russian Science Foundation, Grant no. 18-12-00185. The work of N.A. which consisted of numerical experiments, was supported by the Russian Science Foundation Grant no. 16-12-10059. N.A. acknowledges the use of computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC "Kurchatov Institute”, http://ckp.nrcki.ru/. K.S.T. is supported by Alexander von Humboldt Foundation and by the program 0033-2019-0002 by the Ministry of Science and Higher Education of Russia.
Карточка проекта РНФ: 18-12-00185
16-12-10059
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1038-s41467-020-15402-w.pdf596,47 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.