Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90503
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorWesterhout, T.en
dc.contributor.authorAstrakhantsev, N.en
dc.contributor.authorTikhonov, K. S.en
dc.contributor.authorKatsnelson, M. I.en
dc.contributor.authorBagrov, A. A.en
dc.date.accessioned2020-09-29T09:47:35Z-
dc.date.available2020-09-29T09:47:35Z-
dc.date.issued2020-
dc.identifier.citationGeneralization properties of neural network approximations to frustrated magnet ground states / T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I. Katsnelson, et al. . — DOI 10.1038/s41467-020-15402-w // Nature Communications. — 2020. — Vol. 1. — Iss. 11. — 1593.en
dc.identifier.issn2041-1723-
dc.identifier.otherhttps://www.nature.com/articles/s41467-020-15402-w.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.otherecbc0ca9-735a-44a2-be3a-2f10e8021b45pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85082530092m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90503-
dc.description.abstractNeural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by training neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wave function structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of samples and correctly approximate the target state on the rest of the space, drops abruptly when frustration is increased. We also show that learning the sign structure is considerably more difficult than learning amplitudes. Finally, we conclude that the main issue to be addressed at this stage, in order to use the method of NQS for simulating realistic models, is that of generalization rather than expressibility. © 2020, The Author(s).en
dc.description.sponsorshipRussian Science Foundation, RSF: 18-12-00185, 16-12-10059en
dc.description.sponsorshipAlexander von Humboldt-Stiftung: 0033-2019-0002en
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek, NWOen
dc.description.sponsorshipEuropean Research Council, ERC: 338957 FEMTO/ NANOen
dc.description.sponsorshipWe are thankful to Dmitry Ageev and Vladimir Mazurenko for collaboration during the early stages of the project. We have significantly benefited from encouraging discussions with Giuseppe Carleo, Juan Carrasquilla, Askar Iliasov, Titus Neupert, and Slava Rychkov. The research was supported by the ERC Advanced Grant 338957 FEMTO/ NANO and by the NWO via the Spinoza Prize. The work of A.A.B. which consisted of designing the project (together with K.S.T.), implementation of prototype version of the code, and providing general guidance, was supported by Russian Science Foundation, Grant no. 18-12-00185. The work of N.A. which consisted of numerical experiments, was supported by the Russian Science Foundation Grant no. 16-12-10059. N.A. acknowledges the use of computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC "Kurchatov Institute”, http://ckp.nrcki.ru/. K.S.T. is supported by Alexander von Humboldt Foundation and by the program 0033-2019-0002 by the Ministry of Science and Higher Education of Russia.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Researchen
dc.relationinfo:eu-repo/grantAgreement/RSF//18-12-00185en
dc.relationinfo:eu-repo/grantAgreement/RSF//16-12-10059en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceNature Communicationsen
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectLEARNINGen
dc.subjectMODELen
dc.subjectSIMULATIONen
dc.subjectTRAININGen
dc.subjectAMPLITUDE MODULATIONen
dc.subjectARTICLEen
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectBINOCULAR CONVERGENCEen
dc.subjectLEARNINGen
dc.subjectMATHEMATICAL ANALYSISen
dc.subjectQUANTUM CHEMISTRYen
dc.subjectSPACEen
dc.subjectSTRUCTURE ANALYSISen
dc.titleGeneralization properties of neural network approximations to frustrated magnet ground statesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1038/s41467-020-15402-w-
dc.identifier.scopus85082530092-
local.affiliationInstitute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.affiliationPhysik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerlanden
local.affiliationMoscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, 141700, Russian Federationen
local.affiliationInstitute for Theoretical and Experimental Physics NRC Kurchatov Institute, Moscow, 117218, Russian Federationen
local.affiliationSkolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federationen
local.affiliationInstitut für Nanotechnologie, Karlsruhe Institute of Technology, Karlsruhe, 76021, Germanyen
local.affiliationLandau Institute for Theoretical Physics RAS, Moscow, 119334, Russian Federationen
local.affiliationTheoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.affiliationDepartment of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Swedenen
local.contributor.employeeWesterhout, T., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsru
local.contributor.employeeAstrakhantsev, N., Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, 141700, Russian Federation, Institute for Theoretical and Experimental Physics NRC Kurchatov Institute, Moscow, 117218, Russian Federationru
local.contributor.employeeTikhonov, K.S., Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation, Institut für Nanotechnologie, Karlsruhe Institute of Technology, Karlsruhe, 76021, Germany, Landau Institute for Theoretical Physics RAS, Moscow, 119334, Russian Federationru
local.contributor.employeeKatsnelson, M.I., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeBagrov, A.A., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Swedenru
local.issue11-
local.volume1-
dc.identifier.wos000522437900009-
local.identifier.pure12423821-
local.description.order1593-
local.identifier.eid2-s2.0-85082530092-
local.fund.rsf18-12-00185-
local.fund.rsf16-12-10059-
local.identifier.wosWOS:000522437900009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1038-s41467-020-15402-w.pdf596,47 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.