Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90503
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Westerhout, T. | en |
dc.contributor.author | Astrakhantsev, N. | en |
dc.contributor.author | Tikhonov, K. S. | en |
dc.contributor.author | Katsnelson, M. I. | en |
dc.contributor.author | Bagrov, A. A. | en |
dc.date.accessioned | 2020-09-29T09:47:35Z | - |
dc.date.available | 2020-09-29T09:47:35Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Generalization properties of neural network approximations to frustrated magnet ground states / T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I. Katsnelson, et al. . — DOI 10.1038/s41467-020-15402-w // Nature Communications. — 2020. — Vol. 1. — Iss. 11. — 1593. | en |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.other | https://www.nature.com/articles/s41467-020-15402-w.pdf | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | ecbc0ca9-735a-44a2-be3a-2f10e8021b45 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85082530092 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90503 | - |
dc.description.abstract | Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by training neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wave function structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of samples and correctly approximate the target state on the rest of the space, drops abruptly when frustration is increased. We also show that learning the sign structure is considerably more difficult than learning amplitudes. Finally, we conclude that the main issue to be addressed at this stage, in order to use the method of NQS for simulating realistic models, is that of generalization rather than expressibility. © 2020, The Author(s). | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 18-12-00185, 16-12-10059 | en |
dc.description.sponsorship | Alexander von Humboldt-Stiftung: 0033-2019-0002 | en |
dc.description.sponsorship | Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO | en |
dc.description.sponsorship | European Research Council, ERC: 338957 FEMTO/ NANO | en |
dc.description.sponsorship | We are thankful to Dmitry Ageev and Vladimir Mazurenko for collaboration during the early stages of the project. We have significantly benefited from encouraging discussions with Giuseppe Carleo, Juan Carrasquilla, Askar Iliasov, Titus Neupert, and Slava Rychkov. The research was supported by the ERC Advanced Grant 338957 FEMTO/ NANO and by the NWO via the Spinoza Prize. The work of A.A.B. which consisted of designing the project (together with K.S.T.), implementation of prototype version of the code, and providing general guidance, was supported by Russian Science Foundation, Grant no. 18-12-00185. The work of N.A. which consisted of numerical experiments, was supported by the Russian Science Foundation Grant no. 16-12-10059. N.A. acknowledges the use of computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC "Kurchatov Institute”, http://ckp.nrcki.ru/. K.S.T. is supported by Alexander von Humboldt Foundation and by the program 0033-2019-0002 by the Ministry of Science and Higher Education of Russia. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Nature Research | en |
dc.relation | info:eu-repo/grantAgreement/RSF//18-12-00185 | en |
dc.relation | info:eu-repo/grantAgreement/RSF//16-12-10059 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.source | Nature Communications | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | LEARNING | en |
dc.subject | MODEL | en |
dc.subject | SIMULATION | en |
dc.subject | TRAINING | en |
dc.subject | AMPLITUDE MODULATION | en |
dc.subject | ARTICLE | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | BINOCULAR CONVERGENCE | en |
dc.subject | LEARNING | en |
dc.subject | MATHEMATICAL ANALYSIS | en |
dc.subject | QUANTUM CHEMISTRY | en |
dc.subject | SPACE | en |
dc.subject | STRUCTURE ANALYSIS | en |
dc.title | Generalization properties of neural network approximations to frustrated magnet ground states | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1038/s41467-020-15402-w | - |
dc.identifier.scopus | 85082530092 | - |
local.affiliation | Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands | en |
local.affiliation | Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland | en |
local.affiliation | Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, 141700, Russian Federation | en |
local.affiliation | Institute for Theoretical and Experimental Physics NRC Kurchatov Institute, Moscow, 117218, Russian Federation | en |
local.affiliation | Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation | en |
local.affiliation | Institut für Nanotechnologie, Karlsruhe Institute of Technology, Karlsruhe, 76021, Germany | en |
local.affiliation | Landau Institute for Theoretical Physics RAS, Moscow, 119334, Russian Federation | en |
local.affiliation | Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.affiliation | Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden | en |
local.contributor.employee | Westerhout, T., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands | ru |
local.contributor.employee | Astrakhantsev, N., Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, 141700, Russian Federation, Institute for Theoretical and Experimental Physics NRC Kurchatov Institute, Moscow, 117218, Russian Federation | ru |
local.contributor.employee | Tikhonov, K.S., Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russian Federation, Institut für Nanotechnologie, Karlsruhe Institute of Technology, Karlsruhe, 76021, Germany, Landau Institute for Theoretical Physics RAS, Moscow, 119334, Russian Federation | ru |
local.contributor.employee | Katsnelson, M.I., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation | ru |
local.contributor.employee | Bagrov, A.A., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden | ru |
local.issue | 11 | - |
local.volume | 1 | - |
dc.identifier.wos | 000522437900009 | - |
local.identifier.pure | 12423821 | - |
local.description.order | 1593 | - |
local.identifier.eid | 2-s2.0-85082530092 | - |
local.fund.rsf | 18-12-00185 | - |
local.fund.rsf | 16-12-10059 | - |
local.identifier.wos | WOS:000522437900009 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1038-s41467-020-15402-w.pdf | 596,47 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.