Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/90456
Title: A Composite Model for Reflectance and Polarisation of Light from Granulate Materials
Authors: Peltoniemi, J. I.
Gritsevich, M.
Markkanen, J.
Hakala, T.
Suomalainen, J.
Zubko, N.
Wilkman, O.
Muinonen, K.
Issue Date: 2020
Publisher: Copernicus GmbH
Citation: A Composite Model for Reflectance and Polarisation of Light from Granulate Materials / J. I. Peltoniemi, M. Gritsevich, J. Markkanen, T. Hakala, et al. . — DOI 10.5194/isprs-annals-V-1-2020-375-2020 // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. — 2020. — Vol. 1. — Iss. 5. — P. 375-382.
Abstract: Many natural land surfaces, such as sand or snow, consist of densely packed grains, often covered by dust, water droplets, contaminated with other materials such as possible oil leaks, hoar frost, and can also be internally cracked, porous, and heterogeneous. Most scattering models ignore these complications, but here a more detailed approach is taken to test all these effects. The current model is composed of three techniques: 1) Monte Carlo-based electromagnetic volume integral equation technique for non-spherical wavelength scale dust particles, 2) Monte Carlo ray tracing for stochastic-shaped grains much larger than the wavelength, with optional point scattering from dust cover, internal inclusions, and liquid surface layer, in a layer of an optical depths of few units, and 3) adding-doubling to combine smaller layers into an arbitrary, thick and vertically inhomogeneous medium. The model allows the medium to be built in a modular way, and after initialisation, rather complicated layered structures can be computed quickly and flexibly. The computed results are compared against experimental measurements of snow and sand. The model agrees with measurements usually within the measurement accuracy (∼ 0:05). The scattering is observed to depend significantly on grain size, shape, orientation, composition, fine structures, dust, and some other properties that need to be defined. Both, measurement and modelling, require much deeper attention to these properties. © 2020 Copernicus GmbH. All rights reserved.
Keywords: BRDF
EARTH OBSERVATION
ELECTROMAGNETIC WAVES
LIGHT
OPTICAL PROPERTIES
POLARISATION
REFLECTANCE
SCATTERING
SNOW
SOIL
DUST
INTEGRAL EQUATIONS
LEAKAGE (FLUID)
MONTE CARLO METHODS
SNOW
STOCHASTIC SYSTEMS
COMPOSITE MODELING
CURRENT MODELING
INHOMOGENEOUS MEDIUM
LAYERED STRUCTURES
MEASUREMENT ACCURACY
MONTE-CARLO RAY TRACING
SCATTERING MODEL
VOLUME INTEGRAL EQUATION
STOCHASTIC MODELS
URI: http://elar.urfu.ru/handle/10995/90456
Access: info:eu-repo/semantics/openAccess
cc-by
SCOPUS ID: 85091070293
PURE ID: 13915111
ISSN: 2194-9042
DOI: 10.5194/isprs-annals-V-1-2020-375-2020
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.5194-isprs-annals-V-1-2020-375-2020.pdf988,57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.