Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90447
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNagrebetskaya, J. V.en
dc.contributor.authorPanov, V. G.en
dc.date.accessioned2020-09-29T09:47:24Z-
dc.date.available2020-09-29T09:47:24Z-
dc.date.issued2019-
dc.identifier.citationNagrebetskaya, J. V. Joint action of binary factors in the sufficient causes theory and its classification / J. V. Nagrebetskaya, V. G. Panov. — DOI 10.35940/ijitee.A4702.119119 // International Journal of Innovative Technology and Exploring Engineering. — 2019. — Vol. 1. — Iss. 9. — P. 2146-2153.en
dc.identifier.issn2278-3075-
dc.identifier.otherhttps://doi.org/10.35940/ijitee.a4702.119119pdf
dc.identifier.other1good_DOI
dc.identifier.othereb9e72b2-33b5-4c1d-9257-00bb53f66007pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85075200288m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90447-
dc.description.abstractWe consider a problem of formal definition of joint action in the binary sufficient causes framework based on the theory of Boolean algebras. This theory is one of the general causality concepts in epidemiology, environmental sciences, medicine and biology. Its correct mathematical form allows us to regard the binary version of this theory as a specific application of Boolean functions theory. Within the formalism of Boolean functions, a strict definition of the joint action is given and various criteria for the presence of joint action of factors in a Boolean function are obtained. The methods previously developed for analyzing joint action in binary sufficient causes framework allows us to split all the Boolean functions into disjoint equivalence classes. The relationships among these classes however remain uncertain. In the present paper, an integer invariant is introduced which allows one to order joint action types in a certain way. We consider examples of two-and three-factor theories of sufficient causes with the ordinary epidemiological symmetry group. Estimation of the time complexity of determining the type of joint action are considered as well. © BEIESP.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherBlue Eyes Intelligence Engineering and Sciences Publicationen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceInternational Journal of Innovative Technology and Exploring Engineeringen
dc.subjectBOOLEAN ALGEBRAen
dc.subjectBOOLEAN FUNCTIONen
dc.subjectGROUP ACTION ON A SETen
dc.subjectINTEGER-VALUED INVARIANTen
dc.subjectJOINT ACTIONen
dc.subjectSUFFICIENT CAUSES THEORYen
dc.subjectTIME COMPLEXITYen
dc.titleJoint action of binary factors in the sufficient causes theory and its classificationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.35940/ijitee.A4702.119119-
dc.identifier.scopus85075200288-
local.affiliationDepartment of Mathematics, Mechanics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationen
local.affiliationLaboratory of Mathematical Modelling in Ecology and Medicine, Institute of Industrial Ecology, Ural Branch of RAS, Ekaterinburg, Russian Federationen
local.contributor.employeeNagrebetskaya, J.V., Department of Mathematics, Mechanics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federationru
local.contributor.employeePanov, V.G., Laboratory of Mathematical Modelling in Ecology and Medicine, Institute of Industrial Ecology, Ural Branch of RAS, Ekaterinburg, Russian Federationru
local.description.firstpage2146-
local.description.lastpage2153-
local.issue9-
local.volume1-
local.identifier.pure11332090-
local.identifier.eid2-s2.0-85075200288-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.35940-ijitee.A4702.119119.pdf615,01 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.