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   

Abstract: We consider a problem of formal definition of joint 

action in the binary sufficient causes framework based on the 

theory of Boolean algebras. This theory is one of the general 

causality concepts in epidemiology, environmental sciences, 

medicine and biology. Its correct mathematical form allows us to 

regard the binary version of this theory as a specific application of 

Boolean functions theory. Within the formalism of Boolean 

functions, a strict definition of the joint action is given and 

various criteria for the presence of joint action of factors in a 

Boolean function are obtained. The methods previously developed 

for analyzing joint action in binary sufficient causes framework 

allows us to split all the Boolean functions into disjoint 

equivalence classes. The relationships among these classes 

however remain uncertain. In the present paper, an integer 

invariant is introduced which allows one to order joint action 

types in a certain way. We consider examples of two- and 

three-factor theories of sufficient causes with the ordinary 

epidemiological symmetry group. Estimation of the time 

complexity of determining the type of joint action are considered 

as well. 

 
Keywords: Boolean algebra, Boolean function, joint action, 

group action on a set, integer-valued invariant, sufficient causes 

theory, time complexity  

I. INTRODUCTION 

An important theoretical and practical problem of the 

environmental regulatory authorities is to assess a type of 

joint impact of a multicomponent burden on the environment 

and population of industrial cities [1-4]. This problem is 

closely related to the problem of assessing the type of joint 

action of toxic substances or physical factors in toxicology 

and pharmacology [5–8]. However, toxicological studies as a 

rule consider a small number of acting factors due to the 

difficulty of understanding multifactorial effects and 

controversial interpretation of the results of application 

complex multivariate models [9–11]. 

In addition, in many cases acting factors are the causes of a 

disease which prevention often requires not only eliminating 

the actual exposure of the harmful factor that is not always 

possible but, rather, an accurate assessment of which a joint 

effect of these factors is. For instance, it is known that the 

cyanides in industrial wastes are quite poisonous to aquatic 
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life. However, in presence of nickel, a nickel-cyanide 

complex is formed whose toxicity is comparatively low [12]. 

Chelating agents, such as calcium disodium defeated, fall 

into the category of antagonists and operate to minimize the 

lethal effects of heavy metals such as mercury or lead [13]. 

Thus, the presence of certain agents in a multicomponent 

mixture affecting the environment or living systems can 

significantly weaken or eliminate the total effect of the 

mixture. The knowledge of such effects can change the 

assessment of severity of joint effects of pollutants. For 

example, if the joint effect is known to be weaker than the sum 

of one-factor effects, this saves money or resources on the 

necessary measures to reduce the environmental burden of 

pollutants. 

 One of the causal analysis model in epidemiology and 

environmental sciences is the so-called sufficient causes 

framework [14–21]. This approach addresses, inter alia, 

representations of various causation mechanisms of acting 

factors in a response, as well as the problem of identification 

possible acting agents’ synergism [15,18–21].  

These issues were discussed in detail in [15,17,19–21] for 

the binary theory. As it turned out, it is possible to build a 

formalized model of sufficient causes theory which, however, 

does not adequately represent both the initial ideas of that 

theory and means of research. 

A more rigorous formal presentation of the binary 

sufficient causes theory is possible on the basis of finite 

Boolean algebras theory. That was shown in [22,23] for two 

variables and in [24] for general case of n variables. An 

adequate mathematical apparatus is presented therein for 

studying a classification of factors joint action types in the 

binary theory of sufficient causes.  

It is important to note that the problem of classification 

joint action types from the viewpoint of risk assessment is not 

posed explicitly and remains unclear in all formal models of 

the theory of sufficient causes. 

Briefly, the structure of the binary theory of sufficient 

causes can be described as follows [22–24]. The state space of 

a binary experiment forms a finite Boolean algebra consisting 

of the set of all binary vectors of length n. The response 

(outcome) is considered as a Boolean function on this space 

and the set of all responses forms the Boolean algebra of all 

Boolean functions defined on the state space. Empirical 

symmetries [15,17,21] play an important role in the structure 

of a binary experiment. In the proposed formalization [22–24] 

these symmetries can be written as automorphisms on the 

algebra of Boolean functions.  
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These automorphisms generate a group of experiment’s 

symmetries that action on the Boolean algebra of responses 

determines classes of equivalent responses representing 

different types of joint action.  

In the usual epidemiological situation, these symmetries 

form a group of all symmetries of the n-dimensional cube 

[22–24]. As a result, it is impossible to distinguish the types of 

joint action which could be considered antagonistic (in a 

sense, weakening the total effect of agents) from the 

synergistic types (that are stronger than the sum of one-factor 

effects). This feature of the sufficient causes theory with such 

a group of symmetries requires a more careful study. 

Today it can be argued that, depending on the symmetry 

group under consideration, one can obtain a complete list of 

response functions that forms a certain type of joint action, i.e. 

response functions that are in one such a class represent the 

same type of joint action, and functions from different classes 

have different types of joint action. However, the relationship 

between these classes remains uncertain. For example, it 

cannot be said a priori that one type of joint action is stronger 

or weaker than another. 

In the present paper, we consider the problem of ordering 

the types of joint action with the help of an integer invariant 

on the space of all Boolean functions defined on a finite 

Boolean algebra of experiment states. This invariant allows us 

to order the types of joint action in such a way that it can be 

interpreted as some characteristic of the joint action strength.  

In order the mathematical formalism to be effective in 

application to the binary sufficient causes theory basic 

concepts of that theory should be translated to the Boolean 

algebra language. This formalization allows us to consider 

analysis of joint action of binary factors as a specific 

application of Boolean algebras theory. That is why the main 

statements that have direct applications in epidemiology and 

medicine are given as mathematical theorems, although in 

most cases without a proof. However, we should remember 

that “Eine gute Theorie ist das Praktischste was es gibt”, or “A 

good theory is the most practical thing” (Kant, Kirchhoff and 

many others). Note, however, that the definitions of notions 

used below as well as omitted proofs can be easily recovered 

using the sources from the reference list. 

II.  PROBLEM FORMULATION AND NOTATIONS 

A. Mathematical framework 

A complete description of the formalism of binary 

sufficient causes theory based on Boolean algebras theory is 

presented in [22–24]. The paper [24] also describes the 

relationship between the theory of sufficient causes and the 

Neyman-Holland-Rubin causality model [25]. The general 

formalism of Boolean algebras and Boolean functions see in 

[26–28]. We here describe briefly the basic concepts of the 

Boolean formalization and notations used in that follows. 

In biomedical and environmental studies acting factors 

X1, X2,…, Xn may be the presence of some harmful agent 

(toxin, chemical agent, pollutant, some physical factor etc.) at 

a certain dose, concentration or exposure. A response Y 

represents a certain effect which has often two levels, for 

example, indicating that value of a physiological index is less 

than or greater than some threshold value, or just the absence 

or appearance of some effect. 

In the binary theory, it is assumed that the levels of acting 

factors and response take on two possible values that can be 

encoded with the numbers 0 and 1. 

As shown in [22–24], the formalization of the binary 

sufficient causes theory can be expressed by Boolean 

functions notions, for example, response Y is represented by a 

Boolean function f of Boolean variables x1,…, xn, which 

encode the acting factors X1, X2,…, Xn.  

More precisely, it can be said that in the formal model of 

the sufficient causes theory there are two components 

representing different aspects of the experiment in which the 

variables X1, X2, ..., Xn and the response Y arise. First is the 

space of experiment states, i.e. set of possible values of the 

independent variables x1,…,xn. Obviously, the set of 

experiment states forms a Boolean cube .n  Second is the 

space of all responses defined on the set of experiment states. 

This space forms a free Boolean algebra  
1
, ,

n
x x  of  all 

Boolean functions of x1,…, xn. 

According to this binary sufficient causes theory 

representation the problem of classifying the types of joint 

action of factors X1, X2, ..., Xn  should be posed as the problem 

of calculating orbits of a certain group of automorphisms 

action on the algebra  
1
, ,

n
x x  [22–24].  

We give examples of such a formalization in the case of 

two acting factors represented by the Boolean variables x1, x2. 

In this case the space of experiment states is the Boolean cube 
2   consisting of  2

2 
= 4 elements. The responses’ space is the 

Boolean algebra  
1 2
, ,x x consisting of 

2
2

2 16  

functions. Each such a function can be represented in various 

forms one of which is the canonical disjunctive normal form 

(canonical DNF) [27]. Thus, any function on  
1 2
,x x  can 

be written in the form  

 
1 2 00 1 2 01 1 2 10 1 2 11 1 2 1 2
, ,f x x f x x f x x f x x f x x f x x

 




     V


where 
 

   
, if 1

, , , , , 0,1 .
, if 0

i

i

i

x
f f x

x





 
      

 





     

As shown in [17, 18, 21–24], a juxtaposition of different 

responses to determine whether they are identical in the nature 

of their joint action makes significant use of symmetry 

considerations. In [17, 18, 21] this is presented in an informal 

descriptive form. A more formal representation in the 

Boolean formalism leads to the fact that, along with the 

constructions introduced above, it is necessary to consider a 

certain group of automorphisms on the response algebra. This 

group is usually generated by some empirical symmetries, 

which can be formalized as automorphisms on the space of 

Boolean functions [22–24]. 

For instance, for the two-factor case described above, 

natural symmetries are determined by the following 

transformations [22–24] 
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(A1) The character of the joint action produced by the 

factors X1 and X2 is the same as for the factors X2 and X1. 

(A2) The character of the joint action produced by the 

factors X1 and X2 is the same as for the factors 
1

X  and X2 . 

As shown in [22–24], these conditions can be written as 

transformations on the set of literals as follows 

(transformations T1 and T2 correspond to symmetries (A1) 

and (A2) respectively) 

 

   

   
1 1 2 1 2 1

2 1 1 2 2 2

,

, ,

T x x T x x

T x x T x x

 

 
  

and then continue to automorphisms of the Boolean cube 
2  

by the equality 

      1 2 1 2 , , 1,2i i iT x x T x T x i
        

Automorphisms T1 and T2 generate a group G of all 

automorphisms of the Boolean cube 
2 which is being 

considered here as a graph [29]. Geometrically, this group is a 

group of all symmetries of a square [22,23]. Acton of the 

group G  on the Boolean cube 
2 continues to the action of 

that group on the algebra  
1 2
,x x  of all Boolean functions 

of two variables  x1, x2 in such a way 

 

      

     

1 2 00 1 2 01 1 2

10 1 2 11 1 2

,

, where ,

i i i

i i

T f x x f T x x f T x x

f T x x f T x x f f

  

   
  

The action of this group on the response’s space forms 

various classes of equivalent responses. For the considered 

two-factor case, we obtain the following classes written by 

one of its representatives in angle brackets [22–24]  

 

1 1 1 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

0 {0}, 1 {1}, { , , , }

{ , , , }

{ , , , }

{ , }

x x x x x

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

  

     



   

  

 Thus, the presented formalism allows us to obtain a 

complete list of Boolean functions that have the same type of 

joint action of factors, though relationships among these 

classes remains unclear in most cases. Moreover, an increase 

in the number of acting factors leads to a steep increase in the 

number of joint action types and complication of classes' 

structure. 

 For example, for three-factor sufficient causes theory with 

symmetries similar to (A1) and (A2), we obtain 22 classes of 

equivalent responses some of which have a rather 

complicated structure [24]. This makes it difficult to analyse 

them in terms of their joint action nature. For example, it is 

unclear which of the following responses could be considered 

to have a stronger joint effect of factors 

1 2 3 1 2 3 1 2 3 1 2 3
orx x x x x x x x x x x x   

 We will propose below an integer invariant μ which allows 

us to order classes of equivalent responses in such a way that 

responses that do not have a joint action at all, such as 

constant functions  f = 0, f = 1 or one-factor functions f = x1, f  

= x2, …, f = xn, have zero value μ, and the response x1x2…xn 

(conjunction of variables x1, x2,… ,xn) has a maximum value 

of μ.  

B.  Boolean versions of some notions of sufficient causes 

theory 

In order to get an adequate apparatus for analyzing the 

problem posed, it is necessary to supplement the general 

formalism described in the previous section with some new 

concepts, which are mathematical expressions for more 

complex concepts of the sufficient causes theory. The 

following definitions are known in the theory of Boolean 

functions [26–28]. We recall these definitions together with 

the corresponding notions from the theory of sufficient 

causes. 

Definition 1. A Boolean function g from n variables is 

called an implicant of a Boolean function f  from n variables if 

for all vector 
n

  the equality g(α) = 1 implies the 

equality f(α) = 1. Conjunction of a subset of literals. i.e. 

Boolean variables x1,…, xn or their negation, which is an 

implicant of a Boolean function f  is called its prime 

implicant, if removal of any literal from this conjunction 

results in a non-implicant for it.  

 Prime implicant is a mathematical expression of a notion of 

minimal sufficient cause [20,21] of a response  f, since by 

definition [20,21], there is no excessive variable in the record 

of a minimum sufficient cause, i.e. there is no such literal that 

can be removed and the resulting conjunction remains a 

sufficient cause.  The set of minimal sufficient causes for the 

response f, (i.e., the prime implicants of the Boolean function 

f) those disjunction is equal to f, is called determinative set of 

sufficient minimal causes [20,21]. It is well known that any 

Boolean function f can be represented as a disjunction of all 

its prime implicants (so-called complete DNF, see [27]). 

However, this representation may contain redundant prime 

implicants. Such implicants can be removed (not all at the 

same time) from the representation  f as a disjunction of prime 

implicants without violating the equality. Representation of a 

response f as a disjunction of prime non-redundant implicants 

is called irredundant [27], and the set of corresponding prime 

implicants in [20,21] is called non-redundant determinative 

set of minimal sufficient causes. 

 In [21,30,31] the concept of a sufficient cause exhibiting a 

sufficient cause interaction in the response f is introduced. 

This concept can also be formulated in the Boolean functions 

language. Below we call it joint or combined action of given 

factors (this terms are common in biomedical sciences).  

Definition 2. We say that there is joint action of factors 

x1,…, xn  in a response  f depending on n variables x1,…, xn  if 

such a vector  1, , ,n

n     exists that a 

conjunction 1 2

1 2
n

nx x x
  x

 presents in every 

irredundant representation of the Boolean function f. We also 

say that in this case the joint action in the response f attains at 
.x    

It should be stressed that in Definition 2 a specific type of 

general notion of joint action is introduced. Arbitrary function 

f(x1,…,xn) exhibits, in a sense, some kind of joint action 

though Definition 2 might not be fulfilled. Below we consider 

joint action only in the sense of Definition 2. 

We introduce support fС  of a Boolean  function f  by the 

following equality  
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  1f

n
C f   . It is obvious then that if the 

joint action of factors attains at x   in the response f, then 

.
f

C   

It should also be noted that in the theory of Boolean 

algebras, geometric reasoning is widely used based on the 

representation of a Boolean cube as a graph. Namely, in the 

graph 
n  vertices are all binary vectors of the length n, and 

edges connect those vertices Hamming distance between 

which equals to 1. Denote by 
f a subgraph of the graph  

n  

those vertices are points in 
fС  and edges are corresponding 

edges in .n It is clear that  the graph 
f  and the set 

f
C  are 

different forms of presentation of a Boolean function  (i.e. 

response or outcome)  f. 

Another means widely used in the study of DNF is  

covering of the set 
f

C  by faces of the Boolean cube 
n  [27]. 

Since the theory of sufficient causes is based on 

representation of a response in DNF, the coverings serve a 

very effective tool for this theory as well. Recall, that a set 

 n

I I
B  


   is called a face (or a subcube) of the 

Boolean cube 
n  where 

 
 

 
1

1 1 21, , , ,

, , .
k

k

I

k

k

i i

I i ni i i i

 

      



 



 
  

This face is also called n – k-face since it has dimension n – k. 

A face 
I

B

 is called a face of Boolean function f if .

I f
B C


 

All faces of a Boolean function f form a partially ordered set 

which maximal elements are called maximal face of the 

function f. A family of faces of a function  f  whose union is 

equal to the set Cf  is called a covering of the set Cf  or a 

covering of the Boolean function f. A covering of a Boolean 

function  f  with maximal faces which is minimal by inclusion 

is called its irredundant covering.  

 A relation between the implicants of the Boolean function f 

and its faces is established by the following Lemma. 

 Lemma 1 [27]. Conjunction 1 2

1 2

ii i k

kI i i i
x x x

 

 
x  is a 

(prime) implicant of a Boolean function f  if and only if the n – 

k-face 
I

B


 is a (maximal) face of the function f. 

 Thus, each representation of the response f in the form of 

disjunction of conjunctions of literals that are (prime) 

implicants of  f corresponds to a certain covering of the set 

fС  with (maximal) faces of this function. Similarly, each 

irredundant representation of the function f corresponds to an 

irredundant covering of this function.  

 Therefore, we can establish the following correspondence 

between concepts of sufficient causes theory and geometric 

concepts of the theory of Boolean functions. Each (minimal) 

sufficient cause of a response f is geometrically represented 

by a (maximal) face of the corresponding Boolean function f. 

Each of the determinative set of (minimal) sufficient causes is 

represented by a covering with (maximal) faces of the 

function f. Each of the non-redundant determinative set of 

minimal causes is represented by an irredundant covering of 

the function f. 

III. MAIN RESULTS 

The criterion of the presence of joint action in the binary 

sufficient causes theory given in [20,21] can be formulated in 

terms of Boolean functions as follows. 

Theorem 1. There is joint action of factors x1,…,xn  in an 

response  f  which attains at ,
n

 x    if and only if the 

conjunction x
 presents in every DNF equivalent to the 

Boolean function  f. 

In terms of sufficient causes this means that x
 is a 

minimal sufficient cause presented in every determinative set 

of sufficient causes for the response f.  

Another criterion for the presence of join action of factors 

is 

Theorem 2. There is joint action of factors x1,…, xn  in a 

response  f  which attains at x   if and only if the 

conjunction x
 is a prime implicant of the Boolean 

function f. 

From Lemma 1 and Theorem 2 we obtain the following 

joint action criterion expressed in geometric terms. 

 Theorem 3. There is joint action of factors x1,…, xn  in a 

response  f  which attains at x   if and only if any single 

point set α is a maximal 0-face of the Boolean function  f.  

 From computational viewpoint, it is interesting how and 

what time is required to determine whether the joint action 

of n factors in a given response attains at x  . The 

answer to this question follows from Theorem 4. 

 Theorem 4.  There is joint action of factors x1,…, xn  in a 

response  f  which attains at x   if and only if the point α 

is an isolated vertex in the graph .f  

 Corollary 1. Running time (time complexity) of 

checking for presence of joint action of n factors at  x  

in the response f  is of order O(2
n
·n). 

 Proof. It is obvious that the graph 
n  has N = 2

n
 

vertices. Since the graph f  is a subgraph of the graph 

n , it can be defined by a list of vertices from the support 

f
C . Each of these vertices сan be represented by a binary 

vector of length n. Check if a given vertex from 
f

C has 

zero degree takes a time no more than O(2
n
·n). Indeed, let 

us act on each vertex of the set 
f

C  by an automorphism t of 

the Boolean cube 
n  defined as follows: 

 t x x   Here the symbol a b  means modulo 2 

addition. In the resulting set  
f

C t C  the number of 

vertices of unit Hamming weight coincides with the degree 

of the vertex α in the graph f . Checking for the absence 

of such vertices in C can be done in time no more than   

O(2
n
·n) as the sets C and 

f
C have equal cardinality.  

The estimation O(2
n
·n) of the time complexity cannot be 

improved as in the worst case the graph f  has 2
n
 vertices 

each of which is coded with a binary vector of length n. 
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Note, that the estimate O(2
n
·n) is of exponential order with 

respect to the number n of the acting factors, and it is of 

order O(N), with respect to the largest input size N = 2
n
·n.   

From Definition 2 and Corollary 1 we obtain 

Corollary 2. Running time of checking for the presence 

of joint action of n factors in the response f  is of order no 

more than O(4
n
·n). 

Proof. Indeed, applying to each vertex from the support 
f

C  

algorithm from the proof of Corollary 1, we obtain the desired 

algorithm for checking for the presence of joint action of n 

factors in the response f. Therefore, its time complexity is no 

more than O(4
n
·n). 

In the theory of Boolean functions, the Quine algorithm for 

finding the set of all prime implicants (respectively, maximal 

faces) of the Boolean function f is known [28].  

The above algorithm is a modification of the first stage of the 

Quine algorithm for finding implicants of length n – 1 

(respectively, 1-faces) of Boolean function f. 

As already noted, a type of joint action of factors in a response 

should not depend on the coding of acting factors’ levels and 

their order (see, Section II.B). This statement is formalized by 

defining the group G of automorphisms (symmetries) on the 

Boolean algebra of responses [22–24]. In usual 

epidemiological theory of sufficient causes with n factors the 

automorphism group G is isomorphic to the group of all 

symmetries of the n-dimensional cube (i.e. hypercube) [24]. 

Action of this group on the Boolean algebra of responses 

generates a partition of this algebra into equivalence classes. 

It easily follows from Theorem 2 that the presence of joint 

action of factors holds or does not hold simultaneously for all 

Boolean functions from the same class, i.e. it is a property of 

the whole class of equivalent functions. Therefore, each such 

a class can be considered a class, or a type of joint action of 

factors (in a more general sense than it was defined in 

Definition 2).  

From Theorem 2–4 follows 

Theorem 5. The class f  is a class representing a type of 

joint action of factors x1,…, xn if and only if any of the 

following equivalent conditions is satisfied 

(1) Boolean function f  has a prime implicant consisting of 

exactly n literals; 

(2) there is a 0-face among maximal faces of Boolean function 

f; 

(3) there is an isolated vertex in the graph f . 

Example 1. For n = 2 classes representing nontrivial joint 

action of n factors are only the following 

1 2 1 2 1 2
, .x x x x x x   

Example 2. For n = 3 classes representing nontrivial joint 

action of n factors are only the following classes 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 2 1 1 2 1 2 1

3 3 3 3

3 3 3 3

3 3 3 3 3

3 3 3 3 3

,

.

,

,

, ,

,

x x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

 

  

  

    

  

As can be seen from these examples, it is sometimes difficult 

to understand a specificity of joint action (i.e. interaction) of 

factors and to compare classes among themselves by the 

structure of minimal DNF representing these classes. In this 

regard, the following statement is useful. 

Definition 3. We call degree of joint action of factors x1,…, 

xn in a response f  at values of factor levels  x  a number 

 

 
  min , , 1, if 1

, if 1

f

f

f

f

d C C

n C

   
 







    
   

where 
f

C  is the cardinality of 
f

C and  ,d    is 

Hamming distance between vectors  and .   As follows 

from the Definition 3, the inequality  0
f

n    holds.  

It can be shown that the time complexity of calculating 

  , n

f
     is equal to  2 .

n
O n   

 The following Theorem 6 permits a better insight into the 

joint action concept.  

 Theorem 6. There is joint action of n factors in a Boolean 

function  f  at  x  if and only if   1.
f

   

Proof. If there is joint action in the response f  at  x  then 

by Theorem 4 the point α is an isolated vertex in the graph 

.f  Hence, in particular, .
f

C  If 1
f

C   then 

  1.
f

n    Let be 1.
f

C   Since the point α is isolated 

in the graph 
f

  then the inequality  , 2d   holds for any 

point 
f

Cβ , i.e.   1.
f

  The reverse statement is 

proved similarly. 

 The following geometric meaning of the number  
f

   

can be noted. From Definition 3, it is clear that value 

  1
f

   is the minimum distance from the point α to the 

set of faces that, together with 0-face {α}, enter in every 

covering of the Boolean function f. In terms of sufficient 

causes, this means that this value is a “distance” from the 

minimal sufficient cause x


 to any other sufficient cause of 

the response f. This means that the minimal sufficient cause 

x


 has  “significant influence” at a distance of no more than 

 

2

f
 
 
 


if 1

f
C  , and at a distance n if 1

f
C  . 

 The following property is also useful for understanding of 

the number  .
f

   As follows from Theorem 4, a necessary 

and sufficient condition for the presence of the joint action of 

n factors in the response f which attains at x   is changing 

the value of the response f from 1 to 0 when changing the 

value of any factor. This fact was also noted in [20]. It follows 

from Definition 3 that the response f changes its value from 1 

to 0 when changing values of any number of factors but no 

more than  .
f

   

 In connection with these properties of the degree of joint 

action we can add a characterization of the number  
f

   in 

terms of derivatives of Boolean functions [32]. Recall the 

definition of that derivative.  

 Definition 4. The derivative of the Boolean function f in 

direction of a vector 
n

a   is called a Boolean function 

     .f f f   
a

x x x a  
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 Let be   1f   for an .n
   Then   1f  

a
  if   

  0f   a and   0f  
a
  if     1.f  a  

 Theorem 7. The degree  
f

   of joint action equals to a 

maximum of those numbers m for which the equality 

  1f  
a
  holds for any nonzero vector a with Hamming 

weight no more than m.  

Proof. Let 
n

a  be a nonzero vector with Hamming 

weight no more than  .
f

   Then for a point    a  

the equality      ,d w w   a     holds and, 

therefore, we obtain an inequality    fd    for 

   where w(γ) denotes Hamming weight of a point 

.
n

   By Definition 3, it follows that  ,
f

C  i.e. 

   0 and   1.f f   
a

 

Now let us have   1
f

n    and   1.
f

m     

Then a point 
f

C  exists such that  , ,d m   i.e. 

Hamming weight of the vector   a  equals to m. Thus, 

for a nonzero vector a with Hemming weight greater than 

 
f

  the equalities     1f f  a hold, i.e. 

  0.f  
a
  

From Theorem 6 and 7 it follows 

Corollary 3. There is joint action of the factors x1,…, xn  in 

the response f which attains at x  if and only if  

  1f  
a
  for any vector 

n
a of unit Hemming weight. 

The Definition 3 introduces the degree of joint action of 

factors in a given Boolean function for given values of its 

arguments. However, the same concept can be defined for a 

Boolean function as such. 

Definition 5. We call the degree of joint action of factors  

x1,…, xn in a response f  a number  

  max .
f f f

C        

Obviously, the degree of joint action for n factors is 

invariant with respect to the action of the hypercube symmetry 

group, i.e. this value is correctly defined for a class of 

equivalent responses. 

As mentioned above, the time complexity of calculation of 

 
f

   for a given 
n

   is of order  2 .
n

O n  Therefore, 

the time complexity of calculating the value 
f

  is not more 

than  4 .
n

O n  

From Theorem 6 follows 

Theorem 8. There is joint action of factors x1,…, xn  in a 

response f  if and only if 1.
f

   

Corollary 4. Class f  represents joint action of the 

factors  x1,…, xn  if and only if the inequality 1
f

   holds. 

From Definitions 3 and 5 we now obtain 

Corollary 5. The greatest degree 
f

n  of joint action of 

factors x1,…, xn  has only the conjunction class 
1 2

.
n

x x x  

Since the conjunction of all variables 
1 2 n

x x x can be 

considered a response with the strongest joint action (an 

analogue of the product of predictors in regression analysis), 

and responses without a joint action are characterized by the 

condition 0,
f

   it follows from Corollary 5 that the 

number 
f

  is indeed a feature of joint action power. 

Example 3. For n = 2, the degree of joint action for the 

classes from Example 1 is: 2
f

   for 
1 2

f x x  and   

1
f

   for 
1 2 1 2

.f x x x x   The responses f for which  

0
f

   (representing the absence of joint action of factors x1 

and  x2), are included in the classes 
1 1 20 , 1 , , .x x x    

Example 4. For n = 3, the degree of joint action for the 

classes from Example 2 is: 3
f

   for 
1 2 3

f x x x , 2
f

   

for 
1 2 3 1 2 3

f x x x x x x   and 1
f

   for the remaining 

classes. Particularly, now can answer the question posed in 

the Introduction. Since 1
f

   for 
1 2 3 1 2 3

f x x x x x x  and 

2
f

  for 
1 2 3 1 2 3

f x x x x x x   the joint action in the 

response 
1 2 3 1 2 3

f x x x x x x   should be considered stronger 

then joint action in the response 
1 2 3 1 2 3

.f x x x x x x   

Responses without a joint action of the factors x1, x2, x3 (for 

which 0
f

  ) are included in the following classes 

1 1 2 1 2 30 , 1 , , , ,x x x x x x   and in other classes 

whose representatives recorded in minimal DNF have prime 

implicants containing no more than two literals.  

A comparison of the responses with 0
f

   for n = 2 and n 

= 3 allows one to suggest that in general for the presence of a 

joint action of all factors x1,…, xn  in a given response it is 

necessary that in the minimal DNF representing this response 

at least one conjunction has to contain all these factors or their 

negations. As shown in Theorem 1, this is indeed so and it 

agrees well with the term joint action of all factors. In this 

connection, the need arises for additional analysis of those 

responses f for which 0
f

  and ,  however, there are 

conjunctions of at least two literals, for example, 

1 2 2 3 3 1
.x x x x x x    Obviously, such a response has a stronger 

joint action than, for example, a constant response equals to 0 

or 1. However, for all these functions 0.
f

    

IV. CONCLUSION 

We examined the Boolean formalism of the 

epidemiological binary theory of sufficient causes in the 

context of constructing an invariant to describe the strength 

of joint action. It is shown that this problem can be solved 

within the Boolean framework by introducing a new notion 

of the degree of joint action. We also provide precise 

mathematical concepts that express known epidemiological 

notions.  
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It is shown that in the formal description and 

mathematical analysis of the theory of sufficient causes 

graph theory methods can be effectively applied in addition 

to the formalism of Boolean functions theory.  

 We discussed in detail the very concept of joint action, 

giving its strict definition as well as several criteria for its 

presence in a given response. This allows one to obtain a 

rigorous foundation for a formal analysis of the binary 

sufficient causes theory. 

 In connection with the demonstration that the 

epidemiological binary theory of sufficient causes can be 

considered as a specific application of the theory of 

Boolean functions, we present an algorithm for verification 

whether a given class of equivalent responses is a type of 

joint action and evaluate its time complexity. The 

formalism of Boolean functions also allows us to estimate 

the time complexity of the degree of joint action 

calculation. 

 In general, it is shown that Boolean algebra theory and 

graph theory is an effective means for formalizing and 

analysis of the binary sufficient causes theory. In particular, 

it allows one not only to obtain exact concepts for the 

fundamental constructions of this theory, but also to pose 

new problems and propose solutions to them. 

 We note, however, that at the current formalization 

stage, it is not possible to formulate concept of such a 

response function, which could be considered an analogue 

of the summing effects function known in epidemiology [9, 

33–35]. With respect to this function, the observed 

dose-response dependences are compared, and on the basis 

of that comparison a conclusion is drawn about the 

manifestation of a sub- or superadditive joint action. 

 Nonetheless, the above classification of the types of joint 

action by the magnitude of 
f

  makes it possible to assess 

the strength of the joint influence of factors and, based on 

the available expert information, suggest a reasonable 

conclusion about the appropriateness of applying one or 

another scenario of regulatory measures. 
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