Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90260
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorEroshenko, S.en
dc.contributor.authorKhalyasmaa, A.en
dc.contributor.authorSnegirev, D.en
dc.date.accessioned2020-09-29T09:46:40Z-
dc.date.available2020-09-29T09:46:40Z-
dc.date.issued2018-
dc.identifier.citationEroshenko, S. Machine learning techniques for short-term solar power stations operational mode planning / S. Eroshenko, A. Khalyasmaa, D. Snegirev. — DOI 10.1051/e3sconf/20185102004 // E3S Web of Conferences. — 2018. — Iss. 51. — .en
dc.identifier.issn2555-0403-
dc.identifier.otherhttps://www.e3s-conferences.org/articles/e3sconf/pdf/2018/26/e3sconf_icacer2018_02004.pdfpdf
dc.identifier.other2-3good_DOI
dc.identifier.otherd5f043d5-cb56-4c31-a7dd-1fd14470a8cbpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85073249852m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90260-
dc.description.abstractThe paper presents the operational model of very-short term solar power stations (SPS) generation forecasting developed by the authors, based on weather information and built into the existing software product as a separate module for SPS operational forecasting. It was revealed that one of the optimal mathematical methods for SPS generation operational forecasting is gradient boosting on decision trees. The paper describes the basic principles of operational forecasting based on the boosting of decision trees, the main advantages and disadvantages of implementing this algorithm. Moreover, this paper presents an example of this algorithm implementation being analyzed using the example of data analysis and forecasting the generation of the existing SPS. © The Authors, published by EDP Sciences.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceE3S Web of Conferencesen
dc.subjectDECISION TREESen
dc.subjectFORECASTINGen
dc.subjectFORESTRYen
dc.subjectMACHINE LEARNINGen
dc.subjectPOWER PLANTSen
dc.subjectSOLAR ENERGYen
dc.subjectALGORITHM IMPLEMENTATIONen
dc.subjectMACHINE LEARNING TECHNIQUESen
dc.subjectMATHEMATICAL METHODen
dc.subjectOPERATIONAL FORECASTINGen
dc.subjectOPERATIONAL MODELen
dc.subjectOPERATIONAL MODESen
dc.subjectSOLAR POWER STATIONen
dc.subjectWEATHER INFORMATIONen
dc.subjectTREES (MATHEMATICS)en
dc.titleMachine learning techniques for short-term solar power stations operational mode planningen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1051/e3sconf/20185102004-
dc.identifier.scopus85073249852-
local.affiliationUral Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeEroshenko, S., Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeKhalyasmaa, A., Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationru
local.contributor.employeeSnegirev, D., Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira str. 19, Ekaterinburg, 620002, Russian Federationru
local.issue51-
dc.identifier.wos000454427500013-
local.identifier.pure8554966-
local.identifier.eid2-s2.0-85073249852-
local.identifier.wosWOS:000454427500013-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1051-e3sconf-20185102004.pdf452,98 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.