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Abstract. The paper presents the operational model of very-short term solar power stations (SPS) generation
forecasting developed by the authors, based on weather information and built into the existing software product
as a separate module for SPS operational forecasting. It was revealed that one of the optimal mathematical
methods for SPS generation operational forecasting is gradient boosting on decision trees. The paper describes
the basic principles of operational forecasting based on the boosting of decision trees, the main advantages and
disadvantages of implementing this algorithm. Moreover, this paper presents an example of this algorithm
implementation being analyzed using the example of data analysis and forecasting the generation of the
existing SPS.

1 Introduction
At present, machine-learning algorithms that use decision
trees are very common and universal for most
applications. They allow predicting the real response for
each object, that is, solving the regression problem.
Composing several derived trees, combining the
responses of each of them, it is possible to get a stable
and much more qualitative solution than many other
algorithms can provide.

Forecasting the generation of a solar power station
(SPS), both short-term (day ahead) and operational (one
hour ahead), consists of five main stages:

 Determining the solar radiation flux density
(SRFD) at the boundary of the atmosphere;

 Determining the SRFD incident on the horizontal
surface of the earth;

 Determining the SRFD incident on the inclined
panel surface;

 Determining the generation of a photoelectric DC
converter;

 Determining the power output of AC inverters.
The most difficult part of the SPS generation

forecasting process is the second stage, which is the
determination of SRFD incident on the horizontal surface
of the earth, since this value depends on a variety of
unstable and difficult for forecasting factors, the greatest
influence of which is exerted by cloud cover.

In case of short-term forecasting, the dependence of
SRFD incident on the horizontal surface of the earth on
cloud cover can be restored by solving the regression
problem based on least-squares method (or other similar
method) and choosing the optimal function [1,2]. The use
of such traditional methods to solve the regression
problem for operational forecasting of SRFD incident on
the horizontal surface of the earth is not possible, since in

the case of variable clouds it is not possible to restore the
relationship between SRFD and the current measurement
data, i.e. variables that allow describing this dependence.

2 SPS operational forecasting model

2.1 Problem formulation

In this research the task of SRFD operational forecasting
using retrospective data was set, based on which the
output power of the SPS was calculated [3]. There is a
learning sample S :
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where jy is the parameter, which is the measured value

of SPFD within the task; ijx is the attribute matching the

parameter iy (within the task, attributes can be both
calculated values, solar declination angle  , SRFD on
the boundary of atmosphere 0G , and retrospective
parameters, such as transparency factor Tk as well as
weather data); l is the number of observations in the
sample; a is the number of attributes.

The task consisted in composing the decision trees, which
with great accuracy will determine the value of the new
parameters y according to the relevant attributes ijx
[4,5]; in other words, the task consisted in development
of a model (function) f that, having received x on input,
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would predict the value of the response y . In this
research, a gradient-boosting algorithm was used with
decision trees.

2.2 Gradient boosting

Gradient boosting is essentially a gradient descent in the
space of all possible algorithms [6]; each step of this
descent is done by the basic algorithm according to the
following sequence of actions ( )nb x according to the
following sequence of actions.

 Initializing of the first basic algorithm 0b

0 ( ) 0.b x  (2)

 For 1, ,n N  the following steps are repeated:
1. The shift vector s , which shows how to

correct the predictions of the composition
already constructed to reduce the error in the
learning sample, is calculated:

 1 1 1 12( ( ) y ), , 2( ( ) )n n n l ls a x a x y      (3)

2. A basic algorithm nb is constructed by
approximating its responses to the learning
sample to the shift data is :
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3. After the algorithm is found, it is added to the
composition:

1
1

( ) ( )
J

n n Nj Nj
j

a x a x x R b


     (5)

4. Steps 1-3 are repeated until a stop criterion, for
example, a specified number of iterations, is
satisfied.

The settings shown in Table 1 were used to work with
the gradient-boosting algorithm. The colsample_bytree
and colsample_bylevel settings were used to avoid overfit.
To solve the problem, authors developed an approach
based on gradient boosting on decision trees. The task
was proposed to be solved in three ways: teaching an
algorithm without history, teaching only with history and
teaching with history and weather data.

Computational experiments were performed to
evaluate the possibility of using the gradient-boosting
algorithm on solution trees for the task of SPS generation
operational forecasting within the research work.
Experiments varied according to the following criteria:

 Teaching without history
The following calculated values were used as

attributes:
1. Number of a day in a year n ;
2. Solar declination angle  , degrees;
3. Solar time st , hours;
4. SRFD at the boundary of the atmosphere 0G ,

W/m2.
 Teaching with history

As attributes, the calculated values and the data
obtained by measurements were used:

1. Transparency factor
0

m
T

Gk
G

 , p.u.;

2. Number of a day in a year n ;
3. Solar declination angle  , degrees;
4. Solar time st , hours;
5. SRFD at the boundary of the atmosphere 0G ,

W/m2.

 Teaching with history and weather data
As attributes, the calculated values, the data obtained

by measurements, as well as actual weather data were
used:

1. Transparency factor
0

m
T

Gk
G

 , p.u.;

2. Average temperature per hour temp , K;
3. Maximum temperature per hour temp_max , K;
4. Minimum temperature per hour temp_min , K;
5. Average pressure per hour pressure , hPa;
6. Average humidity per hour humidity , %;
7. Average wind speed per hour wind_speed , m/s;
8. Average wind direction per hour wind_deg ,

degrees;
9. Precipitation in the last 3 hours rain_3h , mm;
10.Average cloud cover per hour clouds_all , %;
11.Weather identifier (presence or absence of cloud

cover), weather_id ;
12.Number of a day in a year n ;
13. Solar declination angle  , degrees;
14. Solar time st , hours;
15. SRFD at the boundary of the atmosphere 0G ,

W/m2.

Table 1. Gradient boosting configuration

Configuration options

Types of input data

Teaching
without
history

Teaching
with
history

Teaching
with history
and weather

data
Step length (learning
rate)  0.005 0.01 0.01

Trees maximum depth
(max_depth) 4 4 6

Number of trees
(n_estimators) 3000 3000 3000

Number of iterations
(n_boost_round) N 3000 3000 3000

Share of variables used
at each iteration
(colsample_bytree)

0.8 0.8 0.8

Share of variables used
at each level of the tree
(colsample_bylevel)

0.7 0.7 0.7

Threshold value thresG 10 10 10
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2.3 Developed model evaluation

A cross-validation was used to evaluate the analytical
model and its behavior on independent data. The
available data were divided into 5 parts for the model
evaluation. The algorithm for the learning subsample is
configured for each partition; then its mean error at the
objects of the control subsample was estimated. The
cross-validation estimation was the error average for all
partitions on the control subsamples [6].

To analyze the prediction error, the mean absolute
percentage error MAPE and the mean-square error (MSE)
were used [7,8]. The mean absolute percentage error
(MAPE) was calculated by the formula:

1

1 100%,
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m fl
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
  (6)

where MAPE is the mean absolute percentage error, [%];

l is the number of objects in the sample;
m

G is the
average measured value of the SRFD near the ground,

[W/m2];
f

G is the average forecast value of the SRFD
near the ground, [W/m2]. MAPE does not allow
adequately estimating the error in the range of small
values mG so a threshold value 100mG  is used to
calculate MAPE.
Mean-square error (MSE) is calculated by the formula:
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where MSE is the mean-square error, [W2/m4]; N is the
number of time intervals t in the day considered (between
sunrise and sunset);

m
G is the average measured value of

the SRFD near the ground, [W/m2];
f

G is the average
forecast value of the SRFD near the ground, [W/m2].

3 Calculation example of SPS
operational forecasting
The results of the operational forecasting correction for
the SRFD incident on the horizontal surface of the earth
G for all three teaching modes in case of the 1-hour
forecast horizon are shown in Fig. 1 - 2.

Parameters of the forecast error for considered days
are presented in the Table 2.

It is seen from the Figures 1 and 2 that in case of
teaching without history (without using current

measurement data) the algorithm allows determining the
relationship between SRFD at the boundary of the
atmosphere 0G and SRFD incident on the horizontal
surface of the earth G without considering cloud cover.
This teaching mode physically takes into account only the
change in the solar altitude angle during the day, as well
as factors that are generally constant (solar absorption by
ozone, dust, air molecules, water).

In case of teaching with history, when the nearest
available data of current measurements were used for the
prediction, the algorithm allows to approximate the
forecast value fG to the measured values mG . For the
case of slightly variable clouds on 28.05.2017, the
algorithm allows to correct the forecast even without
reliance on weather data. For the case of sharply variable
clouds on 27.05.2017, an accurate correction was not
possible; the error for 8 of 16 hours was 50% or more.

The operational forecast correction for such days
necessitates the use of reliable weather data. A decrease
in the prediction error is observed for both days
considered in case of teaching with history and weather
data, even though low quality weather data were used to
teach the algorithm.

Table 3 shows the parameters of the forecast error for
the entire sample considered. This data is from
14.01.2017 to 28.05.2017. It can be seen from the table
that the proposed algorithm has a lower average error for
the 1-hour forecast horizon within the entire considered
time interval (4.5 months) than for a single day. This fact
points at the significant accuracy of operational
forecasting and the success of the proposed algorithm
application for most of the considered days.

From Table 3 it is also clear that the use of low
quality weather data provided only a slight error
reduction compared with teaching only with history.
Obviously, using more accurate weather data will result
in making more accurate operational forecasts.

The main factor affecting the error of operational
forecast is the remoteness of the forecast horizon. Figures
3 and 4 show the dependence of the mean-square error
MSE and the mean absolute percentage error MAPE on
the magnitude of the forecast horizon. It can be seen from
the diagrams that the accuracy increases as the forecast
horizon approaches, since the current measurements are
more informative (better describe the predicted value).

From the analysis of the results obtained, it can be
concluded that it is possible to apply the gradient-
boosting algorithm on solution trees in the context of the
task of SPS generation operational forecasting.

Table 2. Forecast error parameters ( 1H hour )

Day

Type of input data

Without history With history With history and
weather data

MAPE,
%

MSE,
(W/m2)2 MAPE, % MSE,

(W/m2)2
MAPE,
%

MSE,
(W/m2)2

27.05.17 91,01 47514,50 59,03 24835,58 49,89 24461,12
28.05.17 26,56 10056,30 22,96 9224,44 18,46 9720,42



4

E3S Web of Conferences 51, 02004 (2018)	 https://doi.org/10.1051/e3scconf/20185102004
ICACER 2018

Figure 1. 1-hour ahead operational forecast for 27.05.2017 (blue line – without history, red line – with history, orange line – history
and weather)

Figure 2. 1-hour ahead operational forecast for 28.05.2017 (blue line – without history, red line – with history, orange line – history
and weather)

Table 3. Forecast error parameters for the entire sample considered

Forecast horizon H
Types of input data

Without history With history With history and weather data
MAPE, % MSE, (W/m2)2 MAPE, % MSE, (W/m2)2 MAPE, % MSE, (W/m2)2

1 45.84 15950.74 21.06 3651.02 19.88 3363.92
2 45.84 15950.74 28.23 6092.28 24.94 4904.88
3 45.84 15950.74 32.77 8188.28 28.09 5908.13
4 45.84 15950.74 36.77 10476.08 30.63 6627.15
5 45.84 15950.74 40.25 12644.29 32.46 7474.96
6 45.84 15950.74 43.11 14272.88 35.01 8896.09
7 45.84 15950.74 44.82 15489.63 38.07 10589.30
8 45.84 15950.74 45.80 16235.96 39.60 11424.11
9 45.84 15950.74 46.48 16630.79 40.82 11943.67
10 45.84 15950.74 46.34 16556.05 41.48 12665.08
11 45.84 15950.74 46.78 16852.75 41.19 12596.49
12 45.84 15950.74 46.46 16733.06 42.63 13686.00
13 45.84 15950.74 46.64 17000.71 43.40 14260.52
14 45.84 15950.74 46.36 16646.83 44.39 15398.75
15 45.84 15950.74 45.73 16042.63 44.15 15073.16
16 45.84 15950.74 45.61 15718.92 44.47 15030.38
17 45.84 15950.74 45.22 15446.75 45.45 15741.26
18 45.84 15950.74 45.75 15794.79 45.19 15567.77
19 45.84 15950.74 45.52 15842.28 46.40 16543.24
20 45.84 15950.74 45.41 15923.70 47.10 17016.06
21 45.84 15950.74 45.50 16186.40 46.43 16885.56
22 45.84 15950.74 45.81 16655.97 46.38 17081.73
23 45.84 15950.74 46.20 17348.61 45.74 17143.63
24 45.84 15950.74 46.47 17483.31 45.53 17396.71
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Figure 3.MSE dependence on the forecast horizon value (blue
line – without history, orange line – with history, green line –
history and weather)

Figure 4.MAPE dependence on the forecast horizon value
(blue line – without history, orange line – with history, green
line – history and weather)

4 Conclusion
Within the presented research, the analysis of gradient
boosting application on decision trees in the task of SPS
generation operational forecasting is performed.

To improve the accuracy of generation forecasting
based on the data of a local meteorological station, the
authors developed a new mathematical model of
operational forecasting for software implementation as
part of the existing software package. Mathematical
model of operational generation forecasting is
implemented based on decision trees.

Within this research, test calculations of the
operational generation forecast for one of the existing
SPS in Russia in the form of a Python program in the
Jupyter software environment were performed. In the
course of the research, the accuracy of the SPS generation

forecast for the operational forecast model was 75-65%,
which allowed increasing the forecast accuracy by 20%
in comparison with similar approaches to the SPS
generation forecasting.
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