Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90148
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSesekin, A. N.en
dc.contributor.authorZhelonkina, N. I.en
dc.date.accessioned2020-09-29T09:46:11Z-
dc.date.available2020-09-29T09:46:11Z-
dc.date.issued2017-
dc.identifier.citationSesekin, A. N. Tubes of discontinuous solutions of dynamical systems and their stability / A. N. Sesekin, N. I. Zhelonkina. — DOI 10.1063/1.5007383 // AIP Conference Proceedings. — 2017. — Iss. 1895. — 50011.en
dc.identifier.isbn9780735415799-
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.5007383pdf
dc.identifier.other1good_DOI
dc.identifier.othera8483c5a-693b-4003-8ff4-f327d7549423pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85031698410m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90148-
dc.description.abstractThe article is devoted to investigation of nonlinear dynamical systems which applies the generalized effect. The generalized effect (or impulses) is the result of the presence on the right part of the system a generalized derivative of the function of bounded variation. Such system contains incorrect operation of multiplication of discontinuous function on the generalized function from the point of view of the theory of distributions. This incorrectness is overcome by the approximation of the generalized functions in the right part of system by the sequence of smooth approximations of the generalized influences by analogy with sequential approach of the theory of the generalized functions. This sequence generates a sequence of smooth solutions. Then limit of a sequence of smooth solutions is considered. If such limit exists it is offered to be used as a solution. The solution is understood as partial pointwise limit of such sequence if a sequence of smooth solutions does not converge. Such partial limits constitute a tube of solutions. The sufficient conditions are received for stability of tubes of discontinuous solutions. © 2017 Author(s).en
dc.description.sponsorshipRussian Science Foundation, RSFen
dc.description.sponsorshipThe research was supported by Russian Science Foundation (RSF)(project No.16-11-10146).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10146en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.titleTubes of discontinuous solutions of dynamical systems and their stabilityen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/1.5007383-
dc.identifier.scopus85031698410-
local.affiliationN. N. Krasovskii Institute of Mathematics and Mechanics, UrB of RAS, 16 S. Kovalevskaya str., Ekaterinburg, 620990, Russian Federationen
local.affiliationUral Federal University, 19 Mir str., Ekaterinburg, 620990, Russian Federationen
local.contributor.employeeSesekin, A.N., N. N. Krasovskii Institute of Mathematics and Mechanics, UrB of RAS, 16 S. Kovalevskaya str., Ekaterinburg, 620990, Russian Federation, Ural Federal University, 19 Mir str., Ekaterinburg, 620990, Russian Federationru
local.contributor.employeeZhelonkina, N.I., N. N. Krasovskii Institute of Mathematics and Mechanics, UrB of RAS, 16 S. Kovalevskaya str., Ekaterinburg, 620990, Russian Federationru
local.issue1895-
dc.identifier.wos000426902700029-
local.identifier.pure2211838-
local.description.order50011-
local.identifier.eid2-s2.0-85031698410-
local.fund.rsf16-11-10146-
local.identifier.wosWOS:000426902700029-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5007383.pdf359,91 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.