Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90078
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZavalishchin, D.en
dc.date.accessioned2020-09-29T09:45:54Z-
dc.date.available2020-09-29T09:45:54Z-
dc.date.issued2019-
dc.identifier.citationZavalishchin, D. Optimization of body movement with variable structure in a viscous medium with non-constant density / D. Zavalishchin. — DOI 10.1063/1.5133567 // AIP Conference Proceedings. — 2019. — Iss. 2172. — 80009.en
dc.identifier.isbn9780735419193-
dc.identifier.issn0094-243X-
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/1.5133567pdf
dc.identifier.other1good_DOI
dc.identifier.other6a496137-1a33-448f-9c03-b5c8a35eb0d8pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85075800078m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90078-
dc.description.abstractIn the class of problems in the optimal control theory for objects motion in a viscous medium, new formulations with advanced mathematical models, including additional parameters of the medium, are investigated. Such problems are degenerate and their solution requires the development of a special mathematical apparatus. In particular, the formulation of the problem of optimal energy consumption for overcoming the resistance of a viscous medium of variable density, the translational displacement of a variable form solid from one phase state to another (the displacement time is specified) is considered. An analysis of the nonlinear relationships of the physical characteristics of a viscous medium has been carried out and a mathematical model has been constructed taking into account these relationships. The features of the of optimal control problem of the movement of bodies with variable geometry in a viscous medium of variable density from the point of view of the theory of optimal control are revealed. The necessary optimality conditions are obtained. The construction of such a displacement is associated with the solution of some two-point boundary value problem for a system of Navier-Stokes equations and having a similar structure of the conjugate system. © 2019 Author(s).en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 19-01-00371-aen
dc.description.sponsorshipThe investigation was supported by the Russian Foundation for Basic Research, project no. 19-01-00371-a.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.titleOptimization of body movement with variable structure in a viscous medium with non-constant densityen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/1.5133567-
dc.identifier.scopus85075800078-
local.affiliationOptimal Control Dept., N.N.Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str., 16, Ekaterinburg, 620990, Russian Federationen
local.affiliationUral State University of Railway Transport, Kolmogorov str., 66, Ekaterinburg, 620034, Russian Federationen
local.affiliationUral Federal University Named after First President of Russia B. N. Yeltsin, Mira str., 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeZavalishchin, D., Optimal Control Dept., N.N.Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str., 16, Ekaterinburg, 620990, Russian Federation, Ural State University of Railway Transport, Kolmogorov str., 66, Ekaterinburg, 620034, Russian Federation, Ural Federal University Named after First President of Russia B. N. Yeltsin, Mira str., 19, Ekaterinburg, 620002, Russian Federationru
local.issue2172-
dc.identifier.wos000521744400085-
local.identifier.pure11330835-
local.description.order80009-
local.identifier.eid2-s2.0-85075800078-
local.fund.rffi19-01-00371-
local.identifier.wosWOS:000521744400085-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5133567.pdf409,48 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.