Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90071
Название: | Travelling-wave amplitudes as solutions of the phase-field crystal equation |
Авторы: | Nizovtseva, I. G. Galenko, P. K. |
Дата публикации: | 2018 |
Издатель: | Royal Society Publishing |
Библиографическое описание: | Nizovtseva, I. G. Travelling-wave amplitudes as solutions of the phase-field crystal equation / I. G. Nizovtseva, P. K. Galenko. — DOI 10.1098/rsta.2017.0202 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2018. — Vol. 2113. — Iss. 376. — 20170202. |
Аннотация: | The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75. 064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen–Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/ PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the tanh method (Malfliet & Hereman 1996 Phys. Scr. 15, 563–568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713–723 (doi:10.1016/ S0096-3003(03)00745-8)). The general tanh solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general tanh solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1–10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. © 2018 The Author(s) Published by the Royal Society. All rights reserved. |
Ключевые слова: | ATOMIC DENSITY CRYSTAL–LIQUID INTERFACE GRADIENT FLOW PARTIAL DIFFERENTIAL EQUATIONS PHASE-FIELD CRYSTALS TRAVELLING WAVE SOLUTION HYPERBOLIC FUNCTIONS INTERFACE STATES LIQUIDS PARTIAL DIFFERENTIAL EQUATIONS WAVE TRANSMISSION ATOMIC DENSITY GRADIENT FLOW LIQUID INTERFACE PHASE-FIELD CRYSTALS TRAVELLING WAVE SOLUTION PHASE INTERFACES |
URI: | http://elar.urfu.ru/handle/10995/90071 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85040549785 |
Идентификатор WOS: | 000419529400001 |
Идентификатор PURE: | 6432660 |
ISSN: | 1364-503X |
DOI: | 10.1098/rsta.2017.0202 |
Сведения о поддержке: | Russian Science Foundation, RSF: 16-11-10095 Alexander von Humboldt-Stiftung: 1160779 50WM1541 Data accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095), Alexander von Humboldt Foundation (ID 1160779) and the German Space Center Space Management under contract no. 50WM1541. |
Карточка проекта РНФ: | 16-11-10095 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1098-rsta.2017.0202.pdf | 613,56 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.