Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90071
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Nizovtseva, I. G. | en |
dc.contributor.author | Galenko, P. K. | en |
dc.date.accessioned | 2020-09-29T09:45:53Z | - |
dc.date.available | 2020-09-29T09:45:53Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Nizovtseva, I. G. Travelling-wave amplitudes as solutions of the phase-field crystal equation / I. G. Nizovtseva, P. K. Galenko. — DOI 10.1098/rsta.2017.0202 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2018. — Vol. 2113. — Iss. 376. — 20170202. | en |
dc.identifier.issn | 1364-503X | - |
dc.identifier.other | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0202 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 0fd523bb-bf67-497e-9d97-3394d9499dc7 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85040549785 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90071 | - |
dc.description.abstract | The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75. 064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen–Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/ PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the tanh method (Malfliet & Hereman 1996 Phys. Scr. 15, 563–568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713–723 (doi:10.1016/ S0096-3003(03)00745-8)). The general tanh solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general tanh solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1–10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. © 2018 The Author(s) Published by the Royal Society. All rights reserved. | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 16-11-10095 | en |
dc.description.sponsorship | Alexander von Humboldt-Stiftung: 1160779 | en |
dc.description.sponsorship | 50WM1541 | en |
dc.description.sponsorship | Data accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095), Alexander von Humboldt Foundation (ID 1160779) and the German Space Center Space Management under contract no. 50WM1541. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Royal Society Publishing | en |
dc.relation | info:eu-repo/grantAgreement/RSF//16-11-10095 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | en |
dc.subject | ATOMIC DENSITY | en |
dc.subject | CRYSTAL–LIQUID INTERFACE | en |
dc.subject | GRADIENT FLOW | en |
dc.subject | PARTIAL DIFFERENTIAL EQUATIONS | en |
dc.subject | PHASE-FIELD CRYSTALS | en |
dc.subject | TRAVELLING WAVE SOLUTION | en |
dc.subject | HYPERBOLIC FUNCTIONS | en |
dc.subject | INTERFACE STATES | en |
dc.subject | LIQUIDS | en |
dc.subject | PARTIAL DIFFERENTIAL EQUATIONS | en |
dc.subject | WAVE TRANSMISSION | en |
dc.subject | ATOMIC DENSITY | en |
dc.subject | GRADIENT FLOW | en |
dc.subject | LIQUID INTERFACE | en |
dc.subject | PHASE-FIELD CRYSTALS | en |
dc.subject | TRAVELLING WAVE SOLUTION | en |
dc.subject | PHASE INTERFACES | en |
dc.title | Travelling-wave amplitudes as solutions of the phase-field crystal equation | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1098/rsta.2017.0202 | - |
dc.identifier.scopus | 85040549785 | - |
local.affiliation | Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | en |
local.affiliation | Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | en |
local.contributor.employee | Nizovtseva, I.G., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | ru |
local.contributor.employee | Galenko, P.K., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | ru |
local.issue | 376 | - |
local.volume | 2113 | - |
dc.identifier.wos | 000419529400001 | - |
local.identifier.pure | 6432660 | - |
local.description.order | 20170202 | - |
local.identifier.eid | 2-s2.0-85040549785 | - |
local.fund.rsf | 16-11-10095 | - |
local.identifier.wos | WOS:000419529400001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1098-rsta.2017.0202.pdf | 613,56 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.