Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90071
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNizovtseva, I. G.en
dc.contributor.authorGalenko, P. K.en
dc.date.accessioned2020-09-29T09:45:53Z-
dc.date.available2020-09-29T09:45:53Z-
dc.date.issued2018-
dc.identifier.citationNizovtseva, I. G. Travelling-wave amplitudes as solutions of the phase-field crystal equation / I. G. Nizovtseva, P. K. Galenko. — DOI 10.1098/rsta.2017.0202 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2018. — Vol. 2113. — Iss. 376. — 20170202.en
dc.identifier.issn1364-503X-
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0202pdf
dc.identifier.other1good_DOI
dc.identifier.other0fd523bb-bf67-497e-9d97-3394d9499dc7pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85040549785m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90071-
dc.description.abstractThe dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75. 064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen–Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/ PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the tanh method (Malfliet & Hereman 1996 Phys. Scr. 15, 563–568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713–723 (doi:10.1016/ S0096-3003(03)00745-8)). The general tanh solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general tanh solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1–10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. © 2018 The Author(s) Published by the Royal Society. All rights reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 16-11-10095en
dc.description.sponsorshipAlexander von Humboldt-Stiftung: 1160779en
dc.description.sponsorship50WM1541en
dc.description.sponsorshipData accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095), Alexander von Humboldt Foundation (ID 1160779) and the German Space Center Space Management under contract no. 50WM1541.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10095en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectATOMIC DENSITYen
dc.subjectCRYSTAL–LIQUID INTERFACEen
dc.subjectGRADIENT FLOWen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectPHASE-FIELD CRYSTALSen
dc.subjectTRAVELLING WAVE SOLUTIONen
dc.subjectHYPERBOLIC FUNCTIONSen
dc.subjectINTERFACE STATESen
dc.subjectLIQUIDSen
dc.subjectPARTIAL DIFFERENTIAL EQUATIONSen
dc.subjectWAVE TRANSMISSIONen
dc.subjectATOMIC DENSITYen
dc.subjectGRADIENT FLOWen
dc.subjectLIQUID INTERFACEen
dc.subjectPHASE-FIELD CRYSTALSen
dc.subjectTRAVELLING WAVE SOLUTIONen
dc.subjectPHASE INTERFACESen
dc.titleTravelling-wave amplitudes as solutions of the phase-field crystal equationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2017.0202-
dc.identifier.scopus85040549785-
local.affiliationDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federationen
local.affiliationPhysikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyen
local.contributor.employeeNizovtseva, I.G., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyru
local.contributor.employeeGalenko, P.K., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation, Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germanyru
local.issue376-
local.volume2113-
dc.identifier.wos000419529400001-
local.identifier.pure6432660-
local.description.order20170202-
local.identifier.eid2-s2.0-85040549785-
local.fund.rsf16-11-10095-
local.identifier.wosWOS:000419529400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1098-rsta.2017.0202.pdf613,56 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.