Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90069
Название: | On one addition to evaluation by L.S. Pontryagin of the geometric difference of sets in a plane |
Авторы: | Ushakov, V. N. Ershov, A. A. Pershakov, M. V. |
Дата публикации: | 2019 |
Издатель: | Udmurt State University |
Библиографическое описание: | Ushakov, V. N. On one addition to evaluation by L.S. Pontryagin of the geometric difference of sets in a plane / V. N. Ushakov, A. A. Ershov, M. V. Pershakov. — DOI 10.20537/2226-3594-2019-54-06 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2019. — Iss. 54. — P. 63-73. |
Аннотация: | In this paper, two generalizations of convex sets on the plane are considered. The first generalization is the concept of the α-sets. These sets allow for the existence of several projections onto them from an arbitrary point on the plane. However, these projections should be visible from this point at an angle not exceeding α. The second generalization is related to the definition of a convex set according to which the segment connecting the two points of the convex set is also inside it. We consider central symmetric sets for which this statement holds only for two points lying on the opposite sides of some given line. For these two types of nonconvex sets, the problem of finding the maximum area subset is considered. The solution to this problem can be useful for finding suboptimal solutions to optimization problems and, in particular, linear programming. A generalization of the Pontryagin estimate for the geometric difference of an α-set and a ball is proved. In addition, as a corollary, the statement that the α-set in the plane necessarily contains a nonzero point with integer coordinates if its area exceeds a certain critical value is given. This corollary is one of generalizations of the Minkowski theorem for nonconvex sets. © 2019 Udmurt State University. All rights reserved. |
Ключевые слова: | CONVEX SUBSET GEOMETRIC DIFFERENCE MINKOWSKI THEOREM NONCONVEX SET Α-SET |
URI: | http://elar.urfu.ru/handle/10995/90069 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 41435142 |
Идентификатор SCOPUS: | 85079147295 |
Идентификатор WOS: | 000512131100006 |
Идентификатор PURE: | 11456401 |
ISSN: | 2226-3594 |
DOI: | 10.20537/2226-3594-2019-54-06 |
Сведения о поддержке: | Russian Foundation for Basic Research, RFBR: 18–01– 00264, 18–31–00018 Government Council on Grants, Russian Federation Funding. The study of the first and the third authors was funded by RFBR, project number 18–01– 00264. The study of the second author was funded by RFBR, project number 18–31–00018. The work was funded by Act 211 of the Government of the Russian Federation, contract number 02.A03.21.0006. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.20537-2226-3594-2019-54-06.pdf | 195,88 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.