Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90025
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAkopyan, R. R.en
dc.date.accessioned2020-09-29T09:45:41Z-
dc.date.available2020-09-29T09:45:41Z-
dc.date.issued2019-
dc.identifier.citationAkopyan, R. R. Approximation of derivatives of analytic functions from one Hardy class by another Hardy class / R. R. Akopyan. — DOI 10.21538/0134-4889-2019-25-2-21-29 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 2. — Iss. 25. — P. 21-29.en
dc.identifier.issn0134-4889-
dc.identifier.otherhttp://journal.imm.uran.ru/sites/default/files/content/25_2/TrIMMUrORAN_2019_2_p21_L.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other9d398870-577d-4cd1-9670-12150212bc36pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078911490m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90025-
dc.description.abstractIn the Hardy space Hp(De), 1 ≤ p ≤ ∞, of functions analytic in the disk De = {z ∈ C: |z| < e}, we denote by NHp(De), N > 0, the class of functions whose Lp-norm on the circle γe = {z ∈ C: |z| = e} does not exceed the number N and by ∂Hp(De) the class consisting of the derivatives of functions from 1Hp(De). We consider the problem of the best approximation of the class ∂Hp(Dρ) by the class NHp(DR), N > 0, with respect to the Lp-norm on the circle γr, 0 < r < ρ < R. The order of the best approximation as N → +∞ is found: (Equation presented) In the case where the parameter N belongs to some sequence of intervals, the exact value of the best approximation and a linear method implementing it are obtained. A similar problem is considered for classes of functions analytic in rings. © 2019 Mofid University - Center for Human Rights Studies. All rights reserved.en
dc.description.sponsorshipRussian Foundation for Basic Research, RFBR: 18-01-00336en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipUral Federal University, UrFUen
dc.description.sponsorshipThis work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectANALYTIC FUNCTIONSen
dc.subjectBEST APPROXIMATION OF A CLASS BY A CLASSen
dc.subjectHARDY CLASSen
dc.titleApproximation of derivatives of analytic functions from one Hardy class by another Hardy classen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38071595-
dc.identifier.doi10.21538/0134-4889-2019-25-2-21-29-
dc.identifier.scopus85078911490-
local.affiliationUral Federal University, Yekaterinburg, 620002, Russian Federationen
local.affiliationKrasovskii Institute of Mathematics, Mechanics of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationen
local.contributor.employeeAkopyan, R.R., Ural Federal University, Yekaterinburg, 620002, Russian Federation, Krasovskii Institute of Mathematics, Mechanics of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationru
local.description.firstpage21-
local.description.lastpage29-
local.issue25-
local.volume2-
dc.identifier.wos000485177500002-
local.identifier.pure10045923-
local.identifier.eid2-s2.0-85078911490-
local.fund.rffi18-01-00336-
local.identifier.wosWOS:000485177500002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.21538-0134-4889-2019-25-2-21-29.pdf202,78 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.