Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90025
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Akopyan, R. R. | en |
dc.date.accessioned | 2020-09-29T09:45:41Z | - |
dc.date.available | 2020-09-29T09:45:41Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Akopyan, R. R. Approximation of derivatives of analytic functions from one Hardy class by another Hardy class / R. R. Akopyan. — DOI 10.21538/0134-4889-2019-25-2-21-29 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 2. — Iss. 25. — P. 21-29. | en |
dc.identifier.issn | 0134-4889 | - |
dc.identifier.other | http://journal.imm.uran.ru/sites/default/files/content/25_2/TrIMMUrORAN_2019_2_p21_L.pdf | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 9d398870-577d-4cd1-9670-12150212bc36 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85078911490 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/90025 | - |
dc.description.abstract | In the Hardy space Hp(De), 1 ≤ p ≤ ∞, of functions analytic in the disk De = {z ∈ C: |z| < e}, we denote by NHp(De), N > 0, the class of functions whose Lp-norm on the circle γe = {z ∈ C: |z| = e} does not exceed the number N and by ∂Hp(De) the class consisting of the derivatives of functions from 1Hp(De). We consider the problem of the best approximation of the class ∂Hp(Dρ) by the class NHp(DR), N > 0, with respect to the Lp-norm on the circle γr, 0 < r < ρ < R. The order of the best approximation as N → +∞ is found: (Equation presented) In the case where the parameter N belongs to some sequence of intervals, the exact value of the best approximation and a linear method implementing it are obtained. A similar problem is considered for classes of functions analytic in rings. © 2019 Mofid University - Center for Human Rights Studies. All rights reserved. | en |
dc.description.sponsorship | Russian Foundation for Basic Research, RFBR: 18-01-00336 | en |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation, Minobrnauka | en |
dc.description.sponsorship | Ural Federal University, UrFU | en |
dc.description.sponsorship | This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | ANALYTIC FUNCTIONS | en |
dc.subject | BEST APPROXIMATION OF A CLASS BY A CLASS | en |
dc.subject | HARDY CLASS | en |
dc.title | Approximation of derivatives of analytic functions from one Hardy class by another Hardy class | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 38071595 | - |
dc.identifier.doi | 10.21538/0134-4889-2019-25-2-21-29 | - |
dc.identifier.scopus | 85078911490 | - |
local.affiliation | Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.affiliation | Krasovskii Institute of Mathematics, Mechanics of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | en |
local.contributor.employee | Akopyan, R.R., Ural Federal University, Yekaterinburg, 620002, Russian Federation, Krasovskii Institute of Mathematics, Mechanics of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | ru |
local.description.firstpage | 21 | - |
local.description.lastpage | 29 | - |
local.issue | 25 | - |
local.volume | 2 | - |
dc.identifier.wos | 000485177500002 | - |
local.identifier.pure | 10045923 | - |
local.identifier.eid | 2-s2.0-85078911490 | - |
local.fund.rffi | 18-01-00336 | - |
local.identifier.wos | WOS:000485177500002 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.21538-0134-4889-2019-25-2-21-29.pdf | 202,78 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.