Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/82817
Title: Simulation of Coke Quality Indicators Using Artificial Neural Network
Authors: Sidorov, O.
Aristova, N.
Issue Date: 2020
Publisher: Knowledge E
Citation: Sidorov O. Simulation of Coke Quality Indicators Using Artificial Neural Network / O. Sidorov, N. Aristova // III Annual International Conference "Systems Engineering" (Ekaterinburg, Russia, 11-13 December, 2019). – Dubai : Knowledge E, 2020. – KnE Engineering, 5 (3). – pp. 21-28. – DOI 10.18502/keg.v5i3.6753
Abstract: The article shows the application of a neural network for modeling coke quality indicators Coke Reactivity Index (CRI) and Coke Strength after Reaction (CSR). Two optimization methods were used to train the neural network. The influence of the number of neurons on the simulation results was studied. The difference between experimental and calculated data on average does not exceed 2 %. The conclusion is made about the prospects of using a neural network to predict the values of CRI and CSR of coke.
Keywords: ARTIFICIAL NEURAL NETWORK
COKE
COKE REACTIVITY INDEX
COKE STRENGTH AFTER REACTION
URI: http://elar.urfu.ru/handle/10995/82817
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
Conference name: III Annual International Conference "System Engineering"
Conference date: 11.12.2019-13.12.2019
ISSN: 2518-6841
DOI: 10.18502/keg.v5i3.6753
Origin: III Annual International Conference "System Engineering". — Ekaterinburg, 2020
Appears in Collections:Междисциплинарные конференции, семинары, сборники

Files in This Item:
File Description SizeFormat 
10.18502_keg.v5i3.6754.pdf251,06 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons