Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/82726
Title: Implementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery
Authors: Rivera, N.
Cabrera-Bean, M.
Sánchez-Benavides, G.
Gallego-González, C.
Lupiáñez-Pretel, J. A.
Peña-Casanova, J.
Issue Date: 2018
Publisher: Knowledge E
Citation: Implementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery / N. Rivera, M. Cabrera-Bean, G. Sánchez-Benavides, C. Gallego-González, J. A. Lupiáñez-Pretel, J. Peña-Casanova // The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science» (Ekaterinburg, Russia, 13–16 October, 2017). – Dubai : Knowledge E, 2018. – KnE Life Sciences, 4 (8). – pp. 763-772. – DOI 10.18502/kls.v4i8.3334
Abstract: Objective: To develop and implement an online Artificial Neural Network (ANN) that provides the probability of a subject having mild cognitive impairment (MCI) or Alzheimer’s disease (AD). Method: Different ANNs were trained using a sample of 350 controls (CONT), 75 MCI and 93 AD subjects. The ANN structure chosen was the following: (1) an input layer of 33 cognitive variables from the Neuronorma battery plus two sociodemographic variables, age and education. This layer was reduced to a 15 features input vector using Multiple Discriminant Analysis method, (2) one hidden layer with 8 neurons, and (3) three output neurons corresponding to the 3 expected cognitive states. This ANN was defined in a previous study [28]. The ANN was implemented on the web site www.test-barcelona.com (Test Barcelona Workstation) [9]. Results: When comparing CONT, MCI and AD participants, the best ANN correctly classifies up to 94,87% of the study participants. Conclusions: The online implemented ANN, delivers the probabilities (%) of belonging to the CONT, MCI and AD groups of a subject assessed using the 35 characteristics (variables) of the Neuronorma profile. This tool is a good complement for the interpretation of cognitive profiles. This technology improves clinical decision making.
Keywords: ARTIFICIAL NEURAL NETWORK
PROBABILITY
ALZHEIMER DISEASE
TEST BARCELONA WORKSTATION
URI: http://elar.urfu.ru/handle/10995/82726
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
Conference name: The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science»
Conference date: 13.10.2017-16.10.2017
ISSN: 2413-0877
DOI: 10.18502/kls.v4i8.3334
Origin: The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science». — Ekaterinburg, 2018
Appears in Collections:Конференции, семинары

Files in This Item:
File Description SizeFormat 
luria_2018_078.pdf645,8 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons