Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/82726
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Rivera, N. | en |
dc.contributor.author | Cabrera-Bean, M. | en |
dc.contributor.author | Sánchez-Benavides, G. | en |
dc.contributor.author | Gallego-González, C. | en |
dc.contributor.author | Lupiáñez-Pretel, J. A. | en |
dc.contributor.author | Peña-Casanova, J. | en |
dc.date.accessioned | 2020-05-25T08:54:24Z | - |
dc.date.available | 2020-05-25T08:54:24Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Implementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery / N. Rivera, M. Cabrera-Bean, G. Sánchez-Benavides, C. Gallego-González, J. A. Lupiáñez-Pretel, J. Peña-Casanova // The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science» (Ekaterinburg, Russia, 13–16 October, 2017). – Dubai : Knowledge E, 2018. – KnE Life Sciences, 4 (8). – pp. 763-772. – DOI 10.18502/kls.v4i8.3334 | en |
dc.identifier.issn | 2413-0877 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/82726 | - |
dc.description.abstract | Objective: To develop and implement an online Artificial Neural Network (ANN) that provides the probability of a subject having mild cognitive impairment (MCI) or Alzheimer’s disease (AD). Method: Different ANNs were trained using a sample of 350 controls (CONT), 75 MCI and 93 AD subjects. The ANN structure chosen was the following: (1) an input layer of 33 cognitive variables from the Neuronorma battery plus two sociodemographic variables, age and education. This layer was reduced to a 15 features input vector using Multiple Discriminant Analysis method, (2) one hidden layer with 8 neurons, and (3) three output neurons corresponding to the 3 expected cognitive states. This ANN was defined in a previous study [28]. The ANN was implemented on the web site www.test-barcelona.com (Test Barcelona Workstation) [9]. Results: When comparing CONT, MCI and AD participants, the best ANN correctly classifies up to 94,87% of the study participants. Conclusions: The online implemented ANN, delivers the probabilities (%) of belonging to the CONT, MCI and AD groups of a subject assessed using the 35 characteristics (variables) of the Neuronorma profile. This tool is a good complement for the interpretation of cognitive profiles. This technology improves clinical decision making. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Knowledge E | en |
dc.relation.ispartof | The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science». — Ekaterinburg, 2018 | en |
dc.rights | Creative Commons Attribution License | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | PROBABILITY | en |
dc.subject | ALZHEIMER DISEASE | en |
dc.subject | TEST BARCELONA WORKSTATION | en |
dc.title | Implementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science» | en |
dc.conference.date | 13.10.2017-16.10.2017 | - |
dc.identifier.doi | 10.18502/kls.v4i8.3334 | - |
local.description.firstpage | 763 | - |
local.description.lastpage | 772 | - |
Располагается в коллекциях: | Конференции, семинары |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
luria_2018_078.pdf | 645,8 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons