Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/82726
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorRivera, N.en
dc.contributor.authorCabrera-Bean, M.en
dc.contributor.authorSánchez-Benavides, G.en
dc.contributor.authorGallego-González, C.en
dc.contributor.authorLupiáñez-Pretel, J. A.en
dc.contributor.authorPeña-Casanova, J.en
dc.date.accessioned2020-05-25T08:54:24Z-
dc.date.available2020-05-25T08:54:24Z-
dc.date.issued2018-
dc.identifier.citationImplementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery / N. Rivera, M. Cabrera-Bean, G. Sánchez-Benavides, C. Gallego-González, J. A. Lupiáñez-Pretel, J. Peña-Casanova // The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science» (Ekaterinburg, Russia, 13–16 October, 2017). – Dubai : Knowledge E, 2018. – KnE Life Sciences, 4 (8). – pp. 763-772. – DOI 10.18502/kls.v4i8.3334en
dc.identifier.issn2413-0877-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/82726-
dc.description.abstractObjective: To develop and implement an online Artificial Neural Network (ANN) that provides the probability of a subject having mild cognitive impairment (MCI) or Alzheimer’s disease (AD). Method: Different ANNs were trained using a sample of 350 controls (CONT), 75 MCI and 93 AD subjects. The ANN structure chosen was the following: (1) an input layer of 33 cognitive variables from the Neuronorma battery plus two sociodemographic variables, age and education. This layer was reduced to a 15 features input vector using Multiple Discriminant Analysis method, (2) one hidden layer with 8 neurons, and (3) three output neurons corresponding to the 3 expected cognitive states. This ANN was defined in a previous study [28]. The ANN was implemented on the web site www.test-barcelona.com (Test Barcelona Workstation) [9]. Results: When comparing CONT, MCI and AD participants, the best ANN correctly classifies up to 94,87% of the study participants. Conclusions: The online implemented ANN, delivers the probabilities (%) of belonging to the CONT, MCI and AD groups of a subject assessed using the 35 characteristics (variables) of the Neuronorma profile. This tool is a good complement for the interpretation of cognitive profiles. This technology improves clinical decision making.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherKnowledge Een
dc.relation.ispartofThe Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science». — Ekaterinburg, 2018en
dc.rightsCreative Commons Attribution License-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectARTIFICIAL NEURAL NETWORKen
dc.subjectPROBABILITYen
dc.subjectALZHEIMER DISEASEen
dc.subjectTEST BARCELONA WORKSTATIONen
dc.titleImplementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Batteryen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.nameThe Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science»en
dc.conference.date13.10.2017-16.10.2017-
dc.identifier.doi10.18502/kls.v4i8.3334-
local.description.firstpage763-
local.description.lastpage772-
Располагается в коллекциях:Конференции, семинары

Файлы этого ресурса:
Файл Описание РазмерФормат 
luria_2018_078.pdf645,8 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons