Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/75726
Название: | On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function |
Авторы: | Ushakov, V. N. Ershov, A. A. Parshikov, G. V. |
Дата публикации: | 2018 |
Издатель: | Udmurt State University Удмуртский государственный университет |
Библиографическое описание: | Ushakov V. N. On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function / V. N. Ushakov, A. A. Ershov, G. V. Parshikov // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. — 2018. — Vol. 28. — Iss. 4. — P. 489-512. |
Аннотация: | We consider a nonlinear controlled system in a finite-dimensional Euclidean space defined on a finite time interval. One of the main problems of mathematical control theory is studied: the problem of approaching a phase vector of a controlled system with a compact target set in the phase space at a fixed time instant. In this paper, a Lebesgue set of a scalar Lipschitz function defined on the phase space is a target set. The mentioned approach problem is closely connected with many important and key problems of control theory and, in particular, with the problem of optimally reducing a controlled system to a target set. Due to the complexity of the approach problem for nontrivial controlled systems, an analytical representation of solutions is impossible even for relatively simple controlled systems. Therefore, in the present work, we study first of all the issues related to the construction of an approximate solution of the approach problem. The construction of an approximate solution by the method described in the paper is primarily concerned with the design of the integral funnel of the controlled system, presented in the so-called "reverse" time. To date, there are several algorithms for constructing a resolving program control in the approach problem. This paper presents an algorithm for constructing a control based on the maximum attraction of the system's motion to the solvability set of the approach problem. Examples are provided. © 2018 Udmurt State University.All Rights Reserved. |
Ключевые слова: | CONTROL SYSTEM LEBESGUE SET OPTIMAL CONTROL SOLVABILITY SET |
URI: | http://elar.urfu.ru/handle/10995/75726 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 36873366 |
Идентификатор SCOPUS: | 85062734269 |
Идентификатор WOS: | 000467766800005 |
Идентификатор PURE: | 9084988 |
ISSN: | 1994-9197 |
DOI: | 10.20537/vm180405 |
Сведения о поддержке: | Funding. The work was supported by Act 211 of the Government of the Russian Federation, contract no. 02.A03.21.0006. The studies of the first and second authors were supported by the Russian Foundation for Basic Research (project no. 18–01–00221). The study of the third author was supported by the Russian Foundation for Basic Research (project no. 18–01–00264). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.20537-vm180405.pdf | 1,7 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.