Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75726
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorUshakov, V. N.en
dc.contributor.authorErshov, A. A.en
dc.contributor.authorParshikov, G. V.en
dc.date.accessioned2019-07-22T06:48:21Z-
dc.date.available2019-07-22T06:48:21Z-
dc.date.issued2018-
dc.identifier.citationUshakov V. N. On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function / V. N. Ushakov, A. A. Ershov, G. V. Parshikov // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. — 2018. — Vol. 28. — Iss. 4. — P. 489-512.en
dc.identifier.issn1994-9197-
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=vuu&paperid=653&what=fullt&option_lang=engpdf
dc.identifier.other1good_DOI
dc.identifier.othera403474d-11b8-41d3-9c47-3a293f36e25apure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85062734269m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/75726-
dc.description.abstractWe consider a nonlinear controlled system in a finite-dimensional Euclidean space defined on a finite time interval. One of the main problems of mathematical control theory is studied: the problem of approaching a phase vector of a controlled system with a compact target set in the phase space at a fixed time instant. In this paper, a Lebesgue set of a scalar Lipschitz function defined on the phase space is a target set. The mentioned approach problem is closely connected with many important and key problems of control theory and, in particular, with the problem of optimally reducing a controlled system to a target set. Due to the complexity of the approach problem for nontrivial controlled systems, an analytical representation of solutions is impossible even for relatively simple controlled systems. Therefore, in the present work, we study first of all the issues related to the construction of an approximate solution of the approach problem. The construction of an approximate solution by the method described in the paper is primarily concerned with the design of the integral funnel of the controlled system, presented in the so-called "reverse" time. To date, there are several algorithms for constructing a resolving program control in the approach problem. This paper presents an algorithm for constructing a control based on the maximum attraction of the system's motion to the solvability set of the approach problem. Examples are provided. © 2018 Udmurt State University.All Rights Reserved.en
dc.description.sponsorshipFunding. The work was supported by Act 211 of the Government of the Russian Federation, contract no. 02.A03.21.0006. The studies of the first and second authors were supported by the Russian Foundation for Basic Research (project no. 18–01–00221). The study of the third author was supported by the Russian Foundation for Basic Research (project no. 18–01–00264).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherUdmurt State Universityen
dc.publisherУдмуртский государственный университетru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceVestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Naukien
dc.subjectCONTROL SYSTEMen
dc.subjectLEBESGUE SETen
dc.subjectOPTIMAL CONTROLen
dc.subjectSOLVABILITY SETen
dc.titleOn reducing the motion of a controlled system to a Lebesgue set of a Lipschitz functionen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi36873366-
dc.identifier.doi10.20537/vm180405-
dc.identifier.scopus85062734269-
local.affiliationInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federationen
local.affiliationUral Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeУшаков Владимир Николаевичru
local.contributor.employeeЕршов Александр Анатольевичru
local.description.firstpage489-
local.description.lastpage512-
local.issue4-
local.volume28-
dc.identifier.wos000467766800005-
local.identifier.pure9084988-
local.identifier.eid2-s2.0-85062734269-
local.identifier.wosWOS:000467766800005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.20537-vm180405.pdf1,7 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.