Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/75714
Title: Synchronizing monotonic automata
Authors: Ananichev, D. S.
Volkov, M. V.
Issue Date: 2004
Citation: Ananichev D. S. Synchronizing monotonic automata / D. S. Ananichev, M. V. Volkov // Theoretical Computer Science. — 2004. — Vol. 327. — Iss. 3. — P. 225-239.
Abstract: We show that if the state set Q of a synchronizing automaton A = (Q, ∑, δ) admits a linear order such that for each letter a ∈ ∑ the transformation δ(_, a) of β preserves this order, then A possesses a reset word of length |Q| - 1. We also consider two natural generalizations of the notion of a reset word and provide for them results of a similar flavour. © 2004 Elsevier B.V. All rights reserved.
Keywords: INTERVAL RANK OF A WORD
MONOTONIC AUTOMATA
ORDER PRESERVING TRANSFORMATION
RANK OF A WORD
SYNCHRONIZING AUTOMATA
AUTOMATION
MATHEMATICAL TRANSFORMATIONS
ROBOTICS
SET THEORY
SYNCHRONIZATION
THEOREM PROVING
INTERVAL RANK OF A WORD
MONOTONIC AUTOMATA
ORDER PRESERVING TRANSFORMATION
RANK OF A WORD
SYNCHRONIZING AUTOMATA
AUTOMATA THEORY
URI: http://elar.urfu.ru/handle/10995/75714
Access: info:eu-repo/semantics/openAccess
Conference name: Developments in Language Theory
Conference date: 7 July 2003 through 11 July 2003
SCOPUS ID: 6344237329
WOS ID: 000224865300002
PURE ID: 7882917
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2004.03.068
Sponsorship: Several useful comments of the anonymous referees of the proceedings version [1] of this paper are gratefully acknowledged. The authors acknowledge support from the Education Ministry of Russian Federation, Grants E02-1.0-143 and 04.01.059, the Russian Foundation for Basic Research, Grant 01-01-00258, the President Program of Leading Scientific Schools, Grant 2227.2003.1, and the INTAS (through Network Project 99-1224 “Combinatorial and Geometric Theory of Groups and Semigroups and its Applications to Computer Science”).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
1-s2.0-S0304397504004797.pdf243,18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.