Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/75710
Название: | Learning analytics in massive open online courses as a tool for predicting learner performance |
Авторы: | Bystrova, T. Larionova, V. Sinitsyn, E. Tolmachev, A. |
Дата публикации: | 2018 |
Издатель: | National Research University Higher School of Economics Национальный исследовательский университет "Высшая школа экономики" |
Библиографическое описание: | Learning analytics in massive open online courses as a tool for predicting learner performance / T. Bystrova, V. Larionova, E. Sinitsyn et al. // Sotsiologicheskoe Obozrenie. — 2018. — Vol. 17. — Iss. 4. — P. 139-166. |
Аннотация: | Learning analytics in MOOCs can be used to predict learner performance, which is critical as higher education is moving towards adaptive learning. Interdisciplinary methods used in the article allow for interpreting empirical qualitative data on performance in specific types of course assignments to predict learner performance and improve the quality of MOOCs. Learning analytics results make it possible to take the most from the data regarding the ways learners engage with information and their level of skills at entry. The article presents the results of applying the proposed learning analytics algorithm to analyze learner performance in specific MOOCs developed by Ural Federal University and offered through the National Open Education Platform. © 2018, National Research University Higher School of Economics. |
Ключевые слова: | ACADEMIC PERFORMANCE MONITORING ASSESSMENT TOOLS CHECKPOINT ASSIGNMENTS EMPIRICAL EVIDENCE LEARNING ANALYTICS MASSIVE OPEN ONLINE COURSES ONLINE LEARNING |
URI: | http://elar.urfu.ru/handle/10995/75710 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 36566170 |
Идентификатор SCOPUS: | 85057741896 |
Идентификатор WOS: | 000456112500009 |
Идентификатор PURE: | 8423285 |
ISSN: | 1814-9545 |
DOI: | 10.17323/1814-9545-2018-4-139-166 |
Сведения о поддержке: | This study was support- ed by financial assis- tance provided under the Resolution of the Government of the Rus sian Federation No. 211, Contract No. 02. A03.21.0006. Translated from Russian by I. Zhuchkova. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.17323-1814-9545-2018-4-139-166.pdf | 3,02 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.