Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/75440
Title: Best approximation of the differentiation operator in the space L2 on the semiaxis
Authors: Arestov, V.
Filatova, M.
Issue Date: 2014
Publisher: Academic Press Inc.
Citation: Arestov V. Best approximation of the differentiation operator in the space L2 on the semiaxis / V. Arestov, M. Filatova // Journal of Approximation Theory. — 2014. — Vol. 187. — P. 65-81.
Abstract: We solve the problem on the best approximation of the (first-order) differentiation operator by linear bounded operators on the class of twice differentiable functions in the space L2(0, ∞). The best approximating operator is constructed. The optimal differentiation error is found for twice differentiable functions given with a known error in L2(0, ∞), and the optimal method is described. © 2014 Elsevier Inc.
Keywords: DIFFERENTIATION OPERATOR
OPTIMAL RECOVERY
SEMIAXIS
STECHKIN'S PROBLEM
URI: http://elar.urfu.ru/handle/10995/75440
Access: info:eu-repo/semantics/openAccess
publisher-specific-oa
hybrid
SCOPUS ID: 84908244883
WOS ID: 000343623500004
PURE ID: 403159
ISSN: 0021-9045
DOI: 10.1016/j.jat.2014.08.001
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84908244883.pdf251,48 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.