Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75277
Название: Swarm intelligence algorithms for the problem of the optimal placement and operation control of reactive power sources into power grids
Авторы: Manusov, V.
Matrenin, P.
Kokin, S.
Дата публикации: 2017
Издатель: WITPress
Библиографическое описание: Manusov V. Swarm intelligence algorithms for the problem of the optimal placement and operation control of reactive power sources into power grids / V. Manusov, P. Matrenin, S. Kokin // International Journal of Design and Nature and Ecodynamics. — 2017. — Vol. 12. — Iss. 1. — P. 101-112.
Аннотация: Deep reactive power compensation allows for reduction of active power losses in transmission lines of power supply systems. The efficiency of the compensation depends on the allocation of reactive power compensation units (RPCUs) at the nodes of a network. In general, investigations devoted to the study of optimal allocation of the compensation units have revealed that it is a static and deterministic optimization problem that can be solved by heuristic methods. However, in real systems, it is reasonable to consider such optimization problems, taking into account the dynamic and stochastic properties of the problems. These properties are the result of equipment failures and operational changes in technical systems. In addition, optimizing the allocation of the compensation units is the NP-hard multifactor problem. Under these circumstances, it is advisable to use the swarm intelligence algorithms. Swarm intelligence is a relatively new approach to solving the optimization problem, which takes inspiration from the behaviour of ants, birds, and other animals. Advantages of swarm algorithms are most evident if problems involve the dynamic or stochastic nature of the objective function and constraints. Contrary to a number of similar studies, this research considers the problem of the optimal allocation of compensation units as a dynamic problem, taking into account the possible random failures of the compensation equipment. The optimization problem has been solved by two Swarm Intelligence algorithms (the Particle Swarm optimization and the Artificial Bee Colony optimization) and Genetic algorithms. It has been aimed at comparing the effectiveness of the algorithms for solving such problems. It was found that swarm algorithms could be successfully applied in the operation control of compensation units in real-time. © 2017 WIT Press.
Ключевые слова: DEEP COMPENSATION
DYNAMIC OPTIMIZATION PROBLEMS
OPERATION CONTROL
POWER SUPPLY SYSTEMS
SWARM INTELLIGENCE
ARTIFICIAL INTELLIGENCE
ELECTRIC POWER SYSTEM CONTROL
ELECTRIC POWER SYSTEMS
ELECTRIC POWER TRANSMISSION NETWORKS
ELECTRIC POWER UTILIZATION
EVOLUTIONARY ALGORITHMS
GENETIC ALGORITHMS
HEURISTIC METHODS
PARTICLE SWARM OPTIMIZATION (PSO)
POWER CONTROL
PROBLEM SOLVING
REACTIVE POWER
STOCHASTIC SYSTEMS
ARTIFICIAL BEE COLONY OPTIMIZATIONS
DETERMINISTIC OPTIMIZATION PROBLEMS
DYNAMIC OPTIMIZATION PROBLEM (DOP)
OPERATION CONTROL
OPTIMIZATION PROBLEMS
REACTIVE POWER COMPENSATION
SWARM INTELLIGENCE
SWARM INTELLIGENCE ALGORITHMS
OPTIMIZATION
URI: http://elar.urfu.ru/handle/10995/75277
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85007481187
Идентификатор PURE: 1453159
ISSN: 1755-7437
DOI: 10.2495/DNE-V12-N1-101-112
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.2495-dne-v12-n1-101-112.pdf225,07 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.