

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 101-112

© 2017 WIT Press, www.witpress.com
ISSN: 1755-7437 (paper format), ISSN: 1755-7445 (online), http://www.witpress.com/journals
DOI: 10.2495/DNE-V12-N1-101-112

SWARM INTELLIGENCE ALGORITHMS FOR THE
PROBLEM OF THE OPTIMAL PLACEMENT AND

OPERATION CONTROL OF REACTIVE POWER SOURCES
INTO POWER GRIDS

V. MANUSOV1, P. MATRENIN1 & S. KOKIN2

1Novosibirsk State Technical University, Russia.
2Ural Federal University, Russia.

ABSTRACT
Deep reactive power compensation allows for reduction of active power losses in transmission lines of
power supply systems. The efficiency of the compensation depends on the allocation of reactive power
compensation units (RPCUs) at the nodes of a network. In general, investigations devoted to the study
of optimal allocation of the compensation units have revealed that it is a static and deterministic opti-
mization problem that can be solved by heuristic methods. However, in real systems, it is reasonable
to consider such optimization problems, taking into account the dynamic and stochastic properties of
the problems. These properties are the result of equipment failures and operational changes in technical
systems. In addition, optimizing the allocation of the compensation units is the NP-hard multifactor
problem. Under these circumstances, it is advisable to use the swarm intelligence algorithms. Swarm
intelligence is a relatively new approach to solving the optimization problem, which takes inspiration
from the behaviour of ants, birds, and other animals. Advantages of swarm algorithms are most evident
if problems involve the dynamic or stochastic nature of the objective function and constraints. Con-
trary to a number of similar studies, this research considers the problem of the optimal allocation of
compensation units as a dynamic problem, taking into account the possible random failures of the com-
pensation equipment. The optimization problem has been solved by two Swarm Intelligence algorithms
(the Particle Swarm optimization and the Artificial Bee Colony optimization) and Genetic algorithms.
It has been aimed at comparing the effectiveness of the algorithms for solving such problems. It was
found that swarm algorithms could be successfully applied in the operation control of compensation
units in real-time.
Keywords: deep compensation, dynamic optimization problems, operation control, power supply
 systems, swarm intelligence.

1 INTRODUCTION
This paper is devoted to the problem of decreasing energy losses in power-supply systems up
to 10 kV by installing reactive power compensation units (RPCUs). The problem of the loss
reduction is approached from different points of view:

•  Adopting up-to-date energy-saving fabrication systems and energy-saving electrical prod-
ucts;

 • Designing smart grids and equipment complexes (overhead power lines, transformers,
switches, etc.) using new principles, methods of transmission and process control;

•  Reducing the consumption of reactive energy from generators, arranging reactive power
sources at consumers (deep compensation).

102 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

In addition, improving the energy efficiency may help to save the environment. For example,
calculations made for the situation in Germany show that setting RPCUs reduced power losses
by approximately 5.5 billion kWh and prevented emission of about 3 million tons of CO2
per year [1].

It has been proved that in the radial power supply network of enterprises, implementation
of long-term deep reactive power compensation is always profitable and pays off within 1–4
years, because of single-time costs of reactive power units, and increase in power savings in
proportion to the operation time of the system. Therefore, this paper does not consider the
placement of RPCUs in the network nodes; it considers the problem of the operational con-
trol of RPCU powers to ensure minimum active power losses while maintaining the stability
of the system. In networks, loads may change dynamically and equipment failures may occur
and, therefore, it is necessary that RPCUs should be controlled in real time.

For optimization problems with dynamically changing conditions, it is necessary to
apply algorithms that should be first capable of self-organization: that is, automatically
adapting to the task and, secondly, should provide efficient solutions fast enough to work
in real-time. The most known algorithms possessing these properties are the Genetic
Algorithm (GA), Tabu Search, Simulated Annealing, Particle Swarm Optimization (PSO),
and Ant Colony Optimization algorithms. The GA [2–5] and the Swarm Intelligence algo-
rithms [5, 6] are used successfully for the optimal placement of RPCUs in power supply
systems.

In this study, a comparison of the GA, the PSO algorithm and the Artificial Bee Colony
Optimization (ABCO) algorithm in the case of unpredictable time varying conditions of the
problem is made. At this stage of the research, the easiest option for the experiments associ-
ated with failures of RPCUs has been selected. The purpose of this stage is to analyse the
dynamic properties of these algorithms. We aim at creating modifications of these algorithms,
wherein our analysis is based on their further use under conditions when, apart from equip-
ment failures, the power distribution of electricity in the grid is varied according to certain
distribution functions.

2 PROBLEM DESCRIPTION

2.1 The power supply system considered

In this paper, the power supply system of a uranium enrichment and uranium hexafluoride
production plant in the town of Angarsk is considered. The power supply system represents a
0.4 kV substation comprising four sections, and the arrangement of each section is radial. For
the power distribution among consumers, power distribution points fed from the substation
section bus bars are applied. The most congested 10 distribution points are considered in each
section (distribution cabinets), which provide power for asynchronous motors of the ventila-
tion system, electric motors of pumps (the power of each is about 150 kW), and the main
supply lines of boost compressors. Each main supply line provides from 10 to 15 compres-
sors with 9 kW induction motors that are supplied by a stub.

Active power losses in transmission lines of this network are high due to the network hav-
ing a lot of branches and large distances between the nodes. This is attributed to the
technological features of the plant considered. The total length of a section transmission line
is about 5 km. The total power supply system includes eight sections.

As the deep reactive power compensation is selected, it is suggested to install reactive
power sources in such nodes:

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 103

•  Close to the distribution cabinets;

 • Close to the motor control cabinets for the pumps;

•  Close to the control cabinets of the first compressor in the main supply line for the com-
pressors.

All in all, each section has 14 nodes for the potential placement of RPCUs.

2.2 Mathematical model

To create a mathematical model of the optimization problem, it is necessary to define, first,
an optimization criterion; second, dependent variables; third, constraints; and fourth, func-
tional relationships between these elements. The main aim of the optimization is to minimize
active power losses. The dependent variables are the values of the RCPU power in the nodes
of a grid. The first constraint is the limitation on tg(φ), its value must not be higher than 0.35
[7] and not lesser than 0.1 as a too low value can lead to system instability. The second con-
straint is related to the powers of an RPCU since the power of each RPCU cannot exceed the
reactive power consumption of the corresponding unit. Based on this, the optimization
 problem is defined as follows:

 W(QRPCU) = ΔP(QRPCU)→ min (1)

 QRPCU = {Q1, Q2, …, Qn}

 0 < Qi < Qmax i , i =1,…n

 0,1 < tg(φ) < 0,35

ΔP(QRPCU) is the total loss of active power within a network using powers of the RPCU defined
by QRPCU;

QRPCU is the RPCU power vector;
Qi is the RPCU power in the i-th junction (if Qmax i = 0, then an RPCU is not installed in

the i-th junction);
n is the number of junctions where RPCUs are installed; it is shown that there are 14 such

junctions for the section considered;
Qmax i is the maximum allowable RPCU power level in the i-th junction.

3 METHOD APPLIED

3.1 Population-based algorithms

Stochastic optimizing methods are especially productive for optimization problems that have
features such as non-linearity, non-differentiability and a high computational complexity, and
are stochastic and dynamic. The methods using principles of nature such as Evolutionary
Computation, Swarm Intelligence or Simulated annealing demonstrate the best performance
among other stochastic optimization methods. Evolutionary and swarm methods are classified
as the so-called population-based methods since they use systems of agents (populations).
The term ‘agent’ means a point in the decision space, that is some decision of the optimiza-
tion problem. The optimization process may be evolutionary or swarming:

104 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

•  The evolutionary process is based on creating new populations at every new step with
 regard to the experience obtained by the previous populations (the natural selection).

•  Swarming means movements of the agents in the decision space, using a number of rules
and an indirect exchange of data between the agents through shared memory. In contrast to
evolutionary algorithms, the agents are not created and destroyed and the swarm popula-
tion has no centralized control system (an ant colony, a bird flock).

The main feature of the population-based algorithms is their self-organization. It ensures the
algorithms’ ability to explore the decision space automatically regardless of its dimension
and topology. This, in turn, provides the flexibility and possibility to find relatively quickly
optimal solutions that are almost close to the global ones. Descriptions of the PSO and ABCO
algorithms and GA are given in the following text. The detailed descriptions of the natural
fundamentals of these algorithms are omitted because they can be easilyfound in other
 publications of the authors.

In order to make the application and description of the algorithms easier, it is posited that
the search space in algorithms is limited between 0.0 and 1.0 for each axis, and for the calcu-
lation of the objective function (1) each coordinate xi is multiplied by the appropriate
coefficient (see 3.6).

3.2 Particle swarm optimization

The Particle Swarm Optimization algorithm was first proposed by J. Kennedy and R. Eberhart
in 1995 [8]. The algorithm is based on principles of the behaviour of a flock of birds. A flock
acts a coordinated group, and every bird acts according to simple rules. It watches the other
birds and coordinates its own movement with theirs.

According to the scheme of the swarm algorithms’ description [9], the PSO algorithm may
be represented by a tuple {S, M, A, P, I, O}.

1. A set of agents (particles) S = {s1, s2,…,s|S| }. At the j-th iteration the i-th particle is char-
acterized by the state sij = {Xij,Vij, X

best
ij}, where Xij = {x1

ij, x
2
ij,…, xl

ij} is the position,
Vij = {v1

ij, v
2
ij,…, vl

ij} is the velocity, Xbest
ij = {b1

ij, b
2
ij,…, bl

ij} is the best fitness-functions
of the particle position among all the positions it took during the algorithm operation
from the 1st to the j-th iterations, and l is the number of dependent variables.

2. Vector M = Xbest
j is the best Xbest

ij derived among all the particles.
3. Algorithm A describes the mechanism of the PSO algorithm.

• The generation of initial positions and velocities (j = 1):

Xi1 = rand(0,1), i = 1, …, |S|,

Vi1 = rand(0, vmax), i = 1,…|S|,

Xbest
i1 = Xij, i = 1,…|S|,

 where rand(0, 1) is the vector of random numbers uniformly distributed from 0 to 1.

• The calculation of fitness-functions and determination of the best position f(X).

Xbestij = Xij | f(X
best

ij) < f(Xij), i = 1, …, |S|,

M = Xij |f(M) < f(Xij), i = 1, …, |S|),

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 105

• Particles’ movements

Vij+1 = Vijω + α1(X
best

ij - Xij)rand(0,1) + α1(M - Xij)rand(0,1) (i = 1, …, |S|). (2)

Vij+1 = Vmax| Vij+1 > vmax ,i = 1, …, |S|,

Vij+1 = -Vmax| Vij+1 < -vmax ,i = 1, …, |S|.

Xij+1 = Xij + Vij+1 ,i = 1, …, |S|,

Xij+1 = 1| Xij+1 > 1 ,i = 1, …, |S|,

Xij+1 = 0| Xij+1 < 0 ,i = 1, …, |S|

 If a stop-condition is not satisfied, then transit to 3.2.
4. Parameters P = {α1, α2, ω, vmax}. In this paper, the meaning of each parameter is not

described as such descriptions have been provided many times in the literature, for ex-
ample, see [8, 10].

5. Identifiers I and O are the input and output of the PSO algorithm for interacting with an
optimization problem.

3.3 Artificial bee colony optimization

The ABCO algorithm was researched and developed by a number of authors in 2005 [11]. It
is based on the simulation of the behaviour of bees in their search for nectar and the indirect
exchange of information between them.

According to the description scheme of swarm algorithms [9], the ABCO algorithm may
be represented by a tuple {S, M, A, P, I, O}.

1. A set of agents (bees) S = {s1, s2, …, s|S|} and sij = Xij = {x1
ij, x

2
ij, …, xl

ij,}.
2. A means of indirect exchange M is a list of the best and perspective positions found in

the j-th iteration, M = {Nij
b
, Nkj

g}, i = 1, ..., nb, k = 1, ..., ng
.

3. Algorithm A describes the mechanisms of the ABCO algorithm.

•  Initialization of initial positions (j = 1) is fulfilled only for a subset of agents termed
scouts:

Xi1 = rand(0,1), i = 1, …, ns
,

where ns is the number of scout bees.

•  The calculation of fitness-functions f(X) for scouts at the first step and for all the agents
at the next steps.

•  Bee’s movements. Among all the agents nb, the agents with the best values f(X) are cho-
sen, then, out of the rest of the set, ng agents with the best values are chosen. Using these
two sets, the lists of the best and perspective positions M are generated. Herewith, the
distance between any two positions in M over each coordinate must not be less than rx.
Then, cb of bees are sent to the vicinity of each best position and cg are sent to the vicinity
of each perspective position:

X(i−1)cb+k j = Nb
ij−1 + rand(−1, 1)∙rad, i = 1,…, nb, k= 1,…, cb,

Xnb∙cb+(i−1)cg + k j = Nb
ij−1 + rand(−1, 1)∙rad, i = 1,…, ng, k= 1,…, cg,

106 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

 Finally, scout bees are sent:

Xnb∙cb+ng∙cg + ij = rand(−1, 1)∙rad, i = 1,…, ns
.

 If the stop-condition is not satisfied, then transition is made to 3.2.
4. Parameters P = {ns, nb, ng, cb, cg, rad, rx}.
5. Identifiers I and O are the input and output as well as I and O of the PSO algorithm.

3.4 Genetic algorithms

The GA started to be used for solving optimization problems during 1960–1970 as a result of
investigations made by Ingo Rechenberg and John Holland [12]. The algorithm is based on
modelling the mechanisms of natural evolution, such as inheritance, mutation, selection, and
crossover. The agents are called individuals and chromosomes. The GA does not use an indi-
rect communication between the agents; instead, the new population of agents S is created
again at each iteration. Since the GA is much more widely known than the Swarm Intelli-
gence algorithms, it is inappropriate to give the algorithm’s description and, therefore, it is
omitted. It is only necessary to specify that we use the classical algorithm with one-point
crossover of two parents.

3.5 Selection of parameters

The PSO and ACBO algorithms, as well as other Swarm Intelligence algorithms, are featured
with the purpose of setting their heuristic parameters P (coefficients) for a class of problems to
be solved for obtaining higher-quality solutions. It is confirmed by a number of researches [8,
13] and the No Free Lunch theorem [14]. In other words, the swarm algorithms cannot always
work well, and the parameters require tuning for each type of the problem. The most effective
method of setting parameters is a meta-optimization technique [10, 12]. Meta-optimization
assumes considering the parameters selection task as a separate optimization task. Herewith,
some optimization algorithm resolves the application task, and the meta-optimization selects
the parameters of this algorithm for obtaining the best solutions for the application task. In the
research [10], the evolutionary adaptation technique was applied for the adaptation of the algo-
rithms with respect to the conditions of the optimization tasks considered. This adaptation
method is subject to over-tuning and, therefore, it allows us to obtain good results not only for
tasks where the parameters selection was executed but also for other similar tasks. In this paper,
we used the parameters found earlier [6] for a similar optimization problem for the PSO and
ABCO algorithms. Values of the parameters of the GA equal the values of the parameters found
in [5].

3.6 Application of the swarm algorithms to the problem considered

For the interaction of the algorithms with the model of the optimization problem discussed,
it is necessary to set up a correspondence between position X of an agent and the vector spec-
ifying the RPCU arrangement in the grid (QRPCU). In our present paper [6], vector X is used
not as an RPCU power vector, but as the coefficients’ vector, so the power of each RPCU was
determined as the product of the X vector element and the calculated maximum allowable
power of the RPCU in the corresponding junction: Qi = xi∙Qimax. If for the considered variant

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 107

of the RPCU arrangement the value of tg(φ) does not fit the limitations, then the value of the
optimization criterion is added with the penalty value and the penalty >> W (QRPCU)).

4 EXPERIMENTS

4.1 The purpose of the experiment

The experiment simulated the failure cases of one of the RPCU in the grid. It is necessary to
carry out a real-time automatic adjustment of powers of another RPCU to preserve the stability
of the system and minimize the active power losses. There are two alternative ways in the case
of using the population-based algorithms for dynamically changing optimization problems.

•  As soon as there is a change in the problem’s conditions, the optimization algorithms
are interrupted and then the algorithm is run again for a new optimization problem. In
this case, the dynamically changing problem is seen as a set of separate unrelated static
optimization problems. This approach ignores the achieved experience of the population
of the algorithm before changing the conditions of the problem. However, it allows the
algorithm to get out of a local extremum and start the search process from scratch, that is
start from the initialization of a new random population. Let us call this way ‘restart’ or
‘the first way’.

•  Never stop the search algorithm. Thus, when the conditions of the problem are changed,
the search process does not start from scratch, but from the state in which the population
was at the moment of changing the conditions. In this instance, there is a chance to quickly
find an effective solution to the modified problem, but this approach increases the risk of
getting stuck in a current local extremum. Let us call this way ‘without restart’ or ‘the
second way’.

The experiments are aimed at comparing the effectiveness of these two ways applied for the
optimization algorithms considered. A priori, it has been suggested that the first way is pre-
ferred for the PSO algorithm and GA and the second way is preferred for the ABCO algorithm
because only the ABCO algorithm ensures that all the agents of the population will not appear
in the vicinity of a single solution.

4.2 Experiment description

During the experiments, each of the algorithms considered (PSO, ABCO, GA) solved the
optimization task (1) separately. The parameters of the algorithms are given in Table 1.

The experiments for each algorithm were performed as follows:

Table 1: Algorithm parameters.

Algorithm Number of agents Heuristics parameters

PSO 100 α1 = 2.03 α2 = 2.32, ω = 0.87, vmax = 0.9
ABCO 100 ns = 10, nb = 15, ng = 10, cb = 4, cg = 3, rad = 0.01,

rx = 0.05

GA 100 pxover = 0.9, pmutation = 0.2

108 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

1. Find the quasi-optimal solution X* of task (1) when all the RPCUs are operational.
2. For each nodei of the grid that has the RPCU (i = 1, ..., n).

• Assume that the RPCUi refused and ceased to function completely.

•  Continue the process of optimization of the algorithm for the task modified, that is use
the restart way described in 4.1. The process is stopped after 200,000 iterations after
the conditions of the task have been changed.

•  Start the optimization algorithm from scratch without taking into account the previous
solution, that is use the way without restart described in 4.1. The process is stopped
after 200,000 iterations after the conditions of the task have been changed.

Table 2: Solutions of the task (1).

Algorithm Way

id of the
RPCU
failed ΔP(100) ΔP(500) ΔP(1,000) ΔP(2,000) ΔP(20,000)

PSO restart 1 312.02 311.92 311.92 311.92 311.90
PSO w/o restart 1 324.48 324.48 324.48 324.48 324.48
ABCO restart 1 311.99 311.42 310.97 310.70 306.14
ABCO w/o restart 1 311.80 311.37 310.93 310.77 310.34
GA restart 1 346.34 346.34 344.27 333.88 316.42
GA w/o restart 1 343.28 339.19 339.19 335.69 318.15
PSO restart 7 311.32 311.31 311.31 311.31 311.31
PSO w/o restart 7 318.06 318.06 318.06 318.06 318.06
ABCO restart 7 311.54 311.02 310.87 310.80 304.43
ABCO w/o restart 7 311.36 311.09 310.96 310.68 300.57
GA restart 7 354.69 344.42 344.42 338.26 315.68
GA w/o restart 7 345.26 345.26 345.26 342.53 319.40
PSO restart 9 352.67 352.67 352.67 352.67 352.67
PSO w/o restart 9 392.46 392.46 392.46 392.46 392.46
ABCO restart 9 324.59 324.09 323.90 323.55 315.19
ABCO w/o restart 9 324.19 323.54 323.36 323.15 321.44
GA restart 9 392.87 392.87 392.87 392.87 368.21
GA w/o restart 9 408.93 396.98 387.31 387.31 366.19
PSO restart 12 358.78 358.78 358.78 358.78 358.78
PSO w/o restart 12 398.97 398.97 398.97 398.97 398.97
ABCO restart 12 330.12 329.61 329.36 329.03 318.74
ABCO w/o restart 12 329.83 329.06 328.83 328.63 321.72
GA restart 12 409.76 407.65 399.73 392.86 382.14
GA w/o restart 12 415.28 409.39 408.97 399.58 377.26
PSO restart 13 311.57 311.57 311.56 311.56 311.56
PSO w/o restart 13 322.89 322.89 322.89 322.89 322.89
ABCO restart 13 311.58 311.40 311.33 311.23 300.08
ABCO w/o restart 13 311.07 310.91 310.91 310.76 304.81
GA restart 13 352.56 342.97 340.22 332.53 312.68

GA w/o restart 13 344.40 344.40 344.40 327.93 319.65

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 109

As the solution of the optimization problem is expected in real-time, it is important how
quickly a quasi-optimal solution to the task will be found after changing the conditions of the
task. Therefore, the results were recorded at 100, 500, 1,000 and 2,000 iterations. The final
results obtained after 200,000 iterations are rather of theoretical value.

4.3 Experimental evidences

The experimental results are shown in Tables 2–4. Table 2 lists the results of solving the opti-
mization problem (1) for the cases of failure of various RPCUs (the results are not shown for
all the RPCUs). The first column defines the algorithm used, the second one shows the
approach used for accounting changing conditions of the problem (see 4.1), the third gives
the number of the failed RPCUs in the correspond experiment. The following columns show
the values of the optimization criterion (active power losses, kW) after the given number of
algorithm iterations. Iterations were counted after changing the conditions of the problem,
that is, from step 2.1 of the description in paragraph 4.2.

Table 2 shows that almost in all these cases, the ABCO algorithm provided the best
solution, regardless of the number of iterations. The PSO algorithm with restart gave sig-
nificantly better results than the PSO algorithm without restart. Moreover, the performance
of the PSO algorithm without restart is hardly improved by increasing the number of itera-
tions, which confirms that the PSO algorithm is unable to get out of a local extremum in
case of changing the conditions of the task. It is attributed to the fact that when the PSO
algorithm convergences in the neighbourhood of an extremum, elements (Xbest

ij - Xij)

Table 3: Comparison of the algorithms’ efficiency, the average deviation.

Algorithm Way

average deviation ΔP of the best, %

100 500 1,000 2,000 200,000

PSO restart 4.132 4.127 4.125 4.123 4.118
PSO w/o restart 8.025 8.024 8.024 8.024 8.024
ABCO restart 2.728 2.652 2.612 2.563 0.597
ABCO w/o restart 2.617 2.551 2.522 2.475 0.492
GA restart 17.057 14.606 13.486 11.323 6.530

GA w/o restart 13.952 13.064 12.633 11.687 6.897

Table 4: Comparison of the algorithms’ efficiency, the max. deviation.

Algorithm Way

maximum deviation ΔP of the best, %

100 500 1,000 2,000 200,000

PSO restart 12.565 12.565 12.565 12.565 12.565
PSO w/o restart 25.173 25.173 25.173 25.173 25.173
ABCO restart 4.072 3.982 3.9372 3.883 2.065
ABCO w/o restart 3.852 3.795 3.784 3.735 1.981
GA restart 28.558 27.896 25.411 24.643 19.893

GA w/o restart 30.289 28.442 28.309 25.363 18.361

110 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

and (M - Xij) in eqn (2) appeared to be very small, and the speeds of the particles are too
small for them to leave the extremum in a reasonable time. The GA gave the worst results,
and its effectiveness with restart is better for some cases, but for others the way without
restart is better. The GA is able to get out of a local extremum by mutation, which resulted
in the ability of the agents of the populations to appear in arbitrary points of the search
space.

Table 2 lists the detailed results only for some RPCUs. Total results averaged over all the
RPCUs are shown in Tables 3 and 4. Table 3 shows the deviation of the values of the optimiza-
tion criterion (ΔP) from the best value found among all the algorithms after 200,000 iterations.
The deviations are averaged over all the RPCUs. The maximum deviation is shown in Table 4,
using the same patterns of the table.

The experiments have proved that the PSO algorithm is most sensitive to the manner in
whichthe dynamic changes of optimization problems’ conditions are accounted. Therefore,
the restart of the PSO algorithm should be performed as soon as the conditions of the problem
are changed. For the GA, it is slightly more preferable to perform a restart, while on the con-
trary, for the ABCO algorithm, taking into account earlier solutions helps to effectively solve
non-permanent tasks. In general, the ABCO algorithm shows a significantly higher efficiency
of the considered problem of the RPCU control. This can be explained by the fact that the
agents of the algorithm are always a swarm of bees dispersed over several areas of the solu-
tions’ search space and never appear in the vicinity of one extremum. In this case, the ABCO
algorithm is more complicated to implement and much more labor-intensive in terms of
selecting the heuristic parameter, as the ABCO algorithm has seven algorithm parameters, as
shown in Table 1.

5 CONCLUSION
1. The task of managing the sources of reactive power in networks up to 10 kV considered

as a dynamic optimization problem is being solved in real-time. Since loads in the grid
can vary in real-time, to improve the compensation efficiency, it is advisable to provide
operative control of the reactive power sources located in the grid. For the experiments,
the failures of RPCUs were simulated, resulting in dynamic changes of the problem’s
conditions.

2. To solve this optimization problem we applied population-based algorithms: the GA,
and PSO, and ABCO algorithms. In the case of solving dynamic optimization problems,
these algorithms can either operate continuously in response to changes in the problem
or restart every time the conditions change. These two ways can be defined as ‘without
restart’ and ‘restart’.

3. The experiments show that the PSO algorithm is necessary to perform the restart; oth-
erwise, the algorithm does not go out of a local extremum, as the agents of the PSO
algorithm tend to congregate into the vicinity of one extremum (Tables 2 and 3). The GA
provides approximately the same efficiency with restart and without it, and it is obvious
that decreasing the probability of the mutation can make the restart more preferable.
However, the results of the GA are significantly worse than the results of both Swarm In-
telligence algorithms (Tables 3 and 4). The ABCO algorithm shows the best performance
and the approach without restart appears to be more effective (Tables 3 and 4). If the
parameters of the ABCO algorithm are tuned properly, then the ABCO agents are always
scattered across multiple extrema, it allows the algorithm to take into account previously
found solutions as well as to find new ones.

 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017) 111

4. Further, we plan to make the optimization problem considered in this paper more explicit
and bring it closer to real conditions. For this purpose, the model of the power supply
system will include not only failures of RPCUs, which, in fact, occur infrequently, but
will also take into account the dynamic changes of loads in grids and operating condi-
tions of consumers.

NOMENCLATURE
ABCO Artificial Bees Colony Optimization
GA Genetic algorithm
PSO Particle Swarm Optimization
RPCU Reactive power compensation unit(s)
tg(φ) the reactive power to active power ratio

REFERENCES
 [1] Energieeinsparung durch Blindleistungskompensation, available at: www.zvei.org/

Publikationen/Blindleistung.pdf
 [2] Da Silva, E.L., Gil, H.A. & Areiza, J.M., Transmission network expansion planning

under an improved genetic algorithm. IEEE Transactions on Power Systems, 15(3), pp.
1168–1174, 2000.
http://dx.doi.org/10.1109/59.871750

 [3] Paterni, P., Vitet, S., Bena, M. & Yokoyama, A., Optimal location of phase shifters in
the french network by genetic algorithm. IEEE Transactions on Power Systems, 14(1),
pp. 37–42, 1999.
http://dx.doi.org/10.1109/59.744481

 [4] Mantawy, A.H., Abdel-Magid, Y.L. & Selim, S.Z., Integrating genetic algorithms, tabu
search, and simulated annealing for the unit commitment problem. IEEE Transactions
on Power Systems, 14(3), pp. 829–836, 1999.
http://dx.doi.org/10.1109/59.780892

 [5] Manusov, V., Tretyakova, E. & Matrenin, P., Population-based algorithms for optimiza-
tion of the reactive power distribution and selection of the cable cross-section in the
power-supply systems. Applied Mechanics and Materials, 792, pp. 230–236, 2015.
http://dx.doi.org/10.4028/www.scientific.net/AMM.792.230

 [6] Manusov, V., Kokin, S. & Matrenin, P., Optimal placement of reactive power sources
in power supply systems, using particle swarm optimization and artificial bees colony
optimization, 2015.

 [7] Order of the Russian Federation Ministry of Industry of 22.02.2007 no. 49, Moscow,
2007.

 [8] Kennedy, J. & Eberhart, R., Particle swarm optimization. Proceeding of IEEE Interna-
tional Conference on Neural Networks, 4, pp. 1942–1948, 1995.
http://dx.doi.org/10.1109/ICNN.1995.488968

 [9] Matrenin, P.V. & Sekaev, V.G., Sistemnoe opisanie algoritmov roevogo intellekta [Sys-
tems approach to swarm intelligence]. Programmnaja inzhenerija, 12, pp. 39–45, 2013.
http://dx.doi.org/10.1109/SIBCON.2015.7147143

[10] Matrenin, P.V. & Sekaev, V.G., Particle swarm optimization with velocity restriction
and evolutionary parameters selection for scheduling problem. Proceeding of the Inter-

http://dx.doi.org/10.1109/59.871750
http://dx.doi.org/10.1109/59.744481
http://dx.doi.org/10.1109/59.780892
http://dx.doi.org/10.4028/www.scientific.net/AMM.792.230
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/SIBCON.2015.7147143

112 V. Manusov, et al., Int. J. of Design & Nature and Ecodynamics. Vol. 12, No. 1 (2017)

national Siberian Conference Control and Communications (SIBCON), IEEE: Omsk,
pp. 1–5, 2015.

[11] Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. & Zaidi, M., The bees algo-
rithm – a novel tool for complex optimisation problems, Manufacturing Engineering
Centre, Cardiff University, Cardiff, UK, 2005.

[12] Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan
Press: Ann Arbor, 1975.

[13] Pedersen, M. & Chippereld, A., Simplifying particle swarm optimization. Applied Soft
Computing, 10(2), pp. 618–628, 2010.
http://dx.doi.org/10.1016/j.asoc.2009.08.029

[14] Wolpert, D.H. & Macready, W.G., No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), pp. 67–82, 1997.
http://dx.doi.org/10.1109/4235.585893

http://dx.doi.org/10.1016/j.asoc.2009.08.029
http://dx.doi.org/10.1109/4235.585893

