Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/75039
Title: Бегущие волны в профиле фазового поля: точные аналитические решения гиперболического уравнения Аллена–Кана
Other Titles: Traveling waves in a profile of phase field: Exact analytical solutions of a hyperbolic Allen-Cahn equation
Authors: Nizovtseva, I. G.
Galenko, P. K.
Alexandrov, D. V.
Vikharev, S. V.
Titova, E. A.
Sukha-Chev, I. S.
Низовцева, И. Г.
Галенко, П. К.
Александров, Д. В.
Вихарев, С. В.
Титова, Е. А.
Сухачёв, И. С.
Issue Date: 2016
Publisher: Udmurt State University
Удмуртский государственный университет
Citation: Бегущие волны в профиле фазового поля: точные аналитические решения гиперболического уравнения Аллена–Кана / И. Г. Низовцева, П. К. Галенко, Д. В. Александров и др. // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. — 2016. — Т. 26. — №. 2. — С. 245-257.
Abstract: To obtain solutions of the hyperbolic Allen-Calm equation, the first integral method, which follows from well-known Hilbert Null-theorem, is used. Exact analytical solutions are obtained in a form of traveling waves, which define complete class of the hyperbolic Allen-Calm equation. It is shown that two subclasses of solutions exist within this complete class. The first subclass exhibits continual solutions and the second subclass is represented by solutions with singularity at the origin of coordinate system. Such non-uniqueness of solutions stands a question about stable attractor, i. e., about the traveling wave to which non-stationary solutions may attract. The obtained solutions include earlier solutions for the parabolic Allen-Calm equation in a form of finite number of tanh-functions.
Keywords: ALLEN-CALM EQUATION
DIVISION THEOREM
FIRST INTEGRAL METHOD
TRAVELING WAVE
URI: http://elar.urfu.ru/handle/10995/75039
Access: info:eu-repo/semantics/openAccess
RSCI ID: 26244784
SCOPUS ID: 85009801512
PURE ID: 1414853
ISSN: 1994-9197
DOI: 10.20537/vm160211
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.20537-vm160211.pdf343,92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.