Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/75022
Название: Comparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distribution
Авторы: Shichkin, A. V.
Buevich, A. G.
Sergeev, A. P.
Дата публикации: 2018
Издатель: American Institute of Physics Inc.
Библиографическое описание: Shichkin A. V. Comparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distribution / A. V. Shichkin, A. G. Buevich, A. P. Sergeev // AIP Conference Proceedings. — 2018. — Vol. 1982. — 20005.
Аннотация: The paper is present a comparison of modern approaches for predicting the spatial distribution in the upper soil layer of a chemical element chromium (Cr), which had spots of anomalously high concentration in the investigated region. The distribution of a normally distributed element copper (Cu) was also predicted. The data were obtained as a result of soil screening in the city of Tarko-Sale, Russia. Models based on artificial neural networks (multilayer perceptron MLP), random forests (RF), and also a model based on a random forest in which MLP used as a tree - a random perceptron forest (RMLPF) - were considered. The models were implemented in MATLAB. Approaches using artificial neural networks (MLP and RMLPF) were significantly more accurate for anomalously distributed Cr. Models based on RF algorithms proved to be more accurate for normally distributed copper. In general, the proposed model RMLPF was the most universal and accurate. © 2018 Author(s).
URI: http://elar.urfu.ru/handle/10995/75022
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 2nd International Conference on Mathematical Methods and Computational Techniques in Science and Engineering
Дата конференции/семинара: 16 February 2018 through 18 February 2018
Идентификатор РИНЦ: 35712930
Идентификатор SCOPUS: 85051121152
Идентификатор WOS: 000447848800005
Идентификатор PURE: 7763378
ISSN: 0094-243X
DOI: 10.1063/1.5045411
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1063-1.5045411.pdf1,13 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.